ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (5)
  • Boltzmann equation  (4)
  • Satellite observations  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 78 (1995), S. 1555-1570 
    ISSN: 1572-9613
    Schlagwort(e): Boltzmann equation ; discrete velocity models ; weak convergence ; random mass flow
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Two convergence results related to the approximation of the Boltzmann equation by discrete velocity models are presented. First we construct a sequence of deterministic discrete velocity models and prove convergence (as the number of discrete velocities tends to infinity) of their solutions to the solution of a spatially homogeneous Boltzmann equation. Second we introduce a sequence of Markov jump processes (interpreted as random discrete velocity models) and prove convergence (as the intensity of jumps tends to infinity) of these processes to the solution of a deterministic discrete velocity model.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 101 (2000), S. 1065-1086 
    ISSN: 1572-9613
    Schlagwort(e): kinetic theory ; Enskog equation ; direct simulation Monte Carlo ; Boltzmann equation ; consistent Boltzmann Algorithm ; dense gases
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract This paper establishes a theoretical foundation for the Consistent Boltzmann Algorithm (CBA) by deriving the limiting kinetic equation. The formulation is similar to the proof by one of the authors that the Boltzmann equation is the limiting kinetic equation for Direct Simulation Monte Carlo [W. Wagner, J. Statist. Phys. 66:1011 (1992)]. For a simplified model distilled from CBA, the limiting equation is solved numerically, and very good agreement with the predictions of the theory is found.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 66 (1992), S. 1011-1044 
    ISSN: 1572-9613
    Schlagwort(e): Boltzmann equation ; Bird's direct simulation Monte Carlo method ; stochastic numerical algorithm ; convergence of random measures ; Markov jump processes
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Bird's direct simulation Monte Carlo method for the Boltzmann equation is considered. The limit (as the number of particles tends to infinity) of the random empirical measures associated with the Bird algorithm is shown to be a deterministic measure-valued function satisfying an equation close (in a certain sense) to the Boltzmann equation. A Markov jump process is introduced, which is related to Bird's collision simulation procedure via a random time transformation. Convergence is established for the Markov process and the random time transformation. These results, together with some general properties concerning the convergence of random measures, make it possible to characterize the limiting behavior of the Bird algorithm.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 70 (1993), S. 773-792 
    ISSN: 1572-9613
    Schlagwort(e): Discrete velocity models ; Boltzmann equation ; simulation methods
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract An approximation procedure for the Boltzmann equation based on random choices of collision pairs from a fixed velocity set and on discrete velocity models is designed. In a suitable limit, the procedure is shown to converge to the time-discretized and spatially homogeneous Boltzmann equation.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-27
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1897–E1935, https://doi.org/10.1175/BAMS-D-19-0316.1.
    Beschreibung: Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.
    Beschreibung: WD acknowledges ESA’s QA4EO (ISMN) and CCI Soil Moisture projects. WD, CRV, AG, and KL acknowledge the G3P project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 870353. MIH and MS acknowledge ESA’s CCI Water Vapour project. MS and RH acknowledges the support by the EUMETSAT member states through CM SAF. DGM acknowledges support from the European Research Council (ERC) under Grant Agreement 715254 (DRY–2–DRY). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
    Beschreibung: 2022-04-01
    Schlagwort(e): Hydrologic cycle ; Satellite observations ; Surface fluxes ; Surface observations ; Water masses/storage ; Water budget/balance
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...