ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Blue light ; Cell division (GA3 light) ; Leaf growth ; Gibberellin ; Light (GA3, cell division) ; Phytochrome ; Triticum (GA3 light)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The present paper is part of a research program which aims at a quantitative analysis of the effects of light and gibberellic acid (GA3) on growth of the first foliage leaf in durum wheat (Triticum durum Desf.). Since leaf growth is the combined result of the increase in cell number (cell division) and cell enlargement, the influence of light and GA3 treatment on cell division in the basal meristem of the first leaf in two cultivars, Cappelli and Creso, was investigated. Creso is a short-strawed cultivar carrying the Gai 1 gene which influences both plant height and insensitivity to applied GA3. Cell division, as measured by mitotic index, was similar in darkness, continuous red light and dichromatic irradiation (far-red plus red), while lower mitotic rates were observed under continuous far-red light: this indicates that the response of cell division is modulated by a high-irradiance reaction of phytochrome in both cultivars. The two cultivars showed different responses to blue light. In Cappelli, blue light and dichromatic irradiation (blue plus red) gave lower mitotic indices than the dark control, indicating the action of a specific blue-light-absorbing photoreceptor, whereas in Creso the response kinetics to all light regimes which included blue light were more complex. On the basis also of the results obtained with GA3 application in Cappelli, it appears that (i) the hormonal treatment is able to change the pattern of mitotic index only in the presence of the action of a blue-light receptor and (ii) the different responses of the two cultivars could be the result of different endogenous hormonal levels. The importance of the observations in relation to the data for first-leaf longitudinal growth reported in a previous paper (Baroncelli et al. 1984, Planta 160, 298–304) is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Blue light ; Coleoptile growth ; Elongation growth (GA, light) ; Gibberellin and light ; Leaf growth ; Light, gibberellin and growth ; Triticum (GA, light)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A comparison has been made of the relative effectiveness of light quality and quantity and gibberellic acid (GA3) treatment on the elongation growth of the coleoptile and the first foliage leaf in durum wheat (Triticum durum Desf. cvs. Cappelli and Creso). The cultivar Creso is a shortstrawed variety carrying the Gai 1 gene on chromosome 4A, which influences both plant height and insensitivity to applied gibberellins. The main conclusions are as follows: 1) coleoptile elongation growth appears to be modulated via the fluencerate-dependent action of a blue-light receptor and via a low energy response of phytochrome; 2) the inhibition of first-foliage-leaf growth depends on the operation of a single blue-light-responsive photoreceptor; 3) high energy blue light produces the same inhibitory effect on the two wheat cultivars, whereas at relatively low fluences of white and blue light, the cultivar Creso is more sensitive; 4) the insensitivity to applied GA3 exerted by the gene Gai 1 in Creso is independent of light; 5) in Cappelli, the action of light on coleoptiles appears to be independent of the applied GA3, whereas the hormone is able to change the pattern of growth inhibition of the first-foliage-leaf.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...