ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Black Sea  (3)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2023-09-14
    Description: Abstract The Black Sea experienced pronounced millennial-scale changes in temperature and rainfall during the last glacial coinciding with Dansgaard-Oeschger cycles. However, little is known regarding the amount and sources of freshwater reaching this inland basin. Here, we present detailed ostracod δ〈sup〉18〈/sup〉O data from the glacial Black Sea showing subdued Dansgaard-Oeschger cyclicity and four prominent longer-term saw-tooth shaped Bond-like cycles. We propose that the δ〈sup〉18〈/sup〉Oostracods signature primarily reflects changes in the atmospheric circulation in response to the waxing and waning Eurasian Ice Sheet. The millennial-scale ice sheet variations likely resulted not only in latitudinal migrations of atmospheric frontal systems but also in shifts of dominant moisture sources for the Black Sea. Heavier isotopic precipitation arrived from the North Atlantic-Mediterranean realm during the warmer interstadials and lighter isotopic precipitation from the Eurasian continental interior during the colder stadials. The subdued Dansgaard-Oeschger variability likely reflects an integrated precipitation signal additionally affected by the long mixing times of the large Black Sea volume up to 1,500 years as suggested from hydrologic-isotope-balance modelling.
    Description: Moisture sources to the Black Sea changed in response to atmospheric frontal displacements driven by Eurasian Ice Sheet dynamics during the last glacial period, according to analyses of ostracod oxygen and strontium isotope data from Black Sea sediments.
    Description: Deutsche Forschungsgemeinschaft (German Research Foundation) https://doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.4545579
    Keywords: ddc:551 ; paleohydrology ; palaeoclimate ; Black Sea ; Archangelsky Ridge ; isotope geochemistry ; Dansgaard-Oeschger cycles
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-18
    Description: Abstract
    Description: This data publication includes stacked paleomagnetic data, inclinations, declinations, and relative paleointensities, for the time interval 120 to 180 ka, comprising data from twelve sediment cores recovered from the Arkhangelsky Ridge in the Southeastern Black Sea; German RV Meteor expedition M72/5 in 2007: M72/5-22GC6, M72/5-22GC8; German RV Maria S. Merian expedition MSM33 in 2013: MSM33-51-3, MSM33-52-1, MSM33-54-3, MSM33-56-1, MSM33-57-1, MSM33-60-1, MSM33-61-1, MSM33-62-2, MSM33-63-1, MSM33-64-1. The data are also described in Nowaczyk et al. (2021). Sediment cores were recovered using gravitiy and piston corers. For paleo- and mineral-magnetic analyses clear plastic boxes of 20×20×15 mm were pressed into the split halves of the generally 1 m long sections of the sediment cores. Data are provided as six ASCII files (.dat, one for each core) with metadata header, followed by 12 data columns and are decribed in the associated data description file (pdf).
    Keywords: sediment magnetization ; Black Sea ; Palaeomagnetism ; Magnetic properties ; Palaeointensity ; Magnetic fabrics and anisotropy ; EPOS ; multi-scale laboratories ; paleomagnetic and magnetic data ; paleomagnetic data ; Core ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC DECLINATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC INCLINATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 PALEOMAGNETISM ; remanent magnetisation 〉 demagnetisation type AF ; Sedimentary
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-21
    Description: A full‐vector paleosecular variation (PSV) record (inclination, declination, and relative paleointensity) from the pen‐ultimate glacial (130–180 ka) could be constructed from a total of 12 sediment cores recovered from the Arkhangelsky Ridge in the SE Black Sea. Stacking of the individual partly fragmented records was achieved by a detailed correlation using high‐resolution data records from X‐ray fluorescence scanning, Ca/Ti and K/Ti log‐ratios, as well as magnetic susceptibility. Age constraints are provided by a detailed composite oxygen isotope stratigraphy from three of the cores, correlated to U‐Th‐dated speleothem oxygen isotope records from Hungary and Turkey. The temporal resolution of the stacked paleomagnetic data records is 200 years. Practically, this data set is the first high‐resolution PSV record for SE Europe/SW Asia from marine isotope stage 6, comprising inclination, declination and relative paleointensity. Besides an easterly swing in declination at ∼159 ka and a pronounced intensity low together with low inclinations at ∼148 ka, both not reaching an excursional PSV index of 〉0.5, the obtained directional variations reflect only normal PSVs, with a PSV index of 〈0.3.
    Description: Key Points: Reconstructed geomagnetic field variation record between 180 and 130 ka from Black Sea sediments. First full‐vector paleosecular variation record from marine isotope stage 6 for Southeast Europe/Southwest Asia. Intensity maxima occur at 166.5 ka and at 141.0 ka.
    Description: Chinese Scholarship Council
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 538.7 ; Black Sea ; geomagnetism ; magnetostratigraphy ; paleomagnetism ; paleosecular variation
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...