ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Biotechnology & Synthetic Biology  (2)
  • Oxford University Press  (2)
Collection
  • Articles  (2)
Keywords
Publisher
  • Oxford University Press  (2)
Years
Topic
  • 1
    Publication Date: 2016-08-27
    Description: Actin-like MreB paralogs play important roles in cell shape maintenance, cell wall synthesis and the regulation of the D,L-endopeptidases, CwlO and LytE. The gram-positive bacteria, Bacillus amyloliquefaciens LL3, is a poly--glutamic acid (-PGA) producing strain that contains three MreB paralogs: MreB, Mbl and MreBH. In B. amyloliquefaciens , CwlO and LytE can degrade -PGA. In this study, we aimed to test the hypothesis that modulating transcript levels of MreB paralogs would alter the synthesis and degradation of -PGA. The results showed that overexpression or inhibition of MreB, Mbl or MreBH had distinct effects on cell morphology and the molecular weight of the -PGA products. In fermentation medium, cells of mreB inhibition mutant were 50.2% longer than LL3, and the -PGA titer increased by 55.7%. However, changing the expression level of mbl showed only slight effects on the morphology, -PGA molecular weight and titer. In the mreBH inhibition mutant, -PGA production and its molecular weight increased by 56.7% and 19.4%, respectively. These results confirmed our hypothesis that suppressing the expression of MreB paralogs might reduce -PGA degradation, and that improving the cell size could strengthen -PGA synthesis. This is the first report of enhanced -PGA production via suppression of actin-like MreB paralogs.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-15
    Description: Clostridium acetobutylicum is an industrially important Gram-positive organism, which is capable of producing economically important chemicals in the ABE (Acetone, Butanol and Ethanol) fermentation process. Renewed interests in the ABE process necessitate the availability of additional genetics tools to facilitate the derivation of a greater understanding of the underlying metabolic and regulatory control processes in operation through forward genetic strategies. In this study, a xylose inducible, mariner -based, transposon system was developed and shown to allow high-efficient random mutagenesis in the model strain ATCC 824. Of the thiamphenicol resistant colonies obtained, 91.9% were shown to be due to successful transposition of the catP- based mini-transposon element. Phenotypic screening of 200 transposon clones revealed a sporulation-defective clone with an insertion in spo0A , thereby demonstrating that this inducible transposon system can be used for forward genetic studies in C. acetobutylicum .
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...