ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biosolubilization  (1)
  • Calcium displacement  (1)
  • Springer  (2)
  • 1990-1994  (2)
  • 1920-1924
  • 1905-1909
Collection
Publisher
  • Springer  (2)
Years
  • 1990-1994  (2)
  • 1920-1924
  • 1905-1909
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 192 (1993), S. 104-109 
    ISSN: 1432-2048
    Keywords: Aluminum toxicity ; Calcium displacement ; Electrical potential ; Root ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several mineral rhizotoxicities, including those induced by Al3+, H+, and Na+, can be relieved by elevated Ca2+ in the rooting medium. This leads to the hypothesis that the toxic cations displace Ca2+ from transport channels or surface ligands that must be occupied by Ca2+ in order for root elongation to occur. In this study with wheat (Triticum aestivum L.) seedlings, we have determined, in the case of Al3+, that (i) Ca2+, Mg2+, and Sr2+ are equally ameliorative, (ii) that root elongation does not increase as Ca2+ replaces Mg2+ or Sr2+ in the rooting media, and (iii) that rhizotoxicity is a function solely of Al3+ activity at the root-cell membrane surface as computed by a Gouy-Chapman-Stern model. The rhizotoxicity was indifferent to the computed membrane-surface Ca2+ activity. The rhizotoxicity induced by high levels of tris(ethylenediamine)cobaltic ion (TEC3+), in contrast to Al3+, was specifically relieved by Ca2+ at the membrane surface. The rhizotoxicity induced by H+ exhibited a weak specific response to Ca2+ at the membrane surface. We conclude that the Ca2+-displacement hypothesis fails in the case of Al3+ rhizotoxicity and that amelioration by cations (including monovalent cations) occurs because of decreased membrane-surface negativity and the consequent decrease in the membrane-surface activity of Al3+. However, TEC3+, but not Al3+, may be toxic because it inhibits Ca2+ uptake. The nature of the specific H+-Ca2+ interaction is uncertain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 6 (1990), S. 53-59 
    ISSN: 1476-5535
    Keywords: Bituminous coal ; Biosolubilization ; Penicillium sp. ; Surface colonization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary APenicillium sp. previously shown to grow on lignite coals degraded an air-oxidized bituminous coal (Illinois #6) to a material that was more than 80% soluble in 0.5 N NaOH. Scanning electron microscopy of the oxidized Illinois #6 revealed colonization of the surface by thePenicillium sp., production of conidia, and erosion of the coal surface. The average molecular weight (MW) of Illinois #6 degraded by the fungus and base-solubilized was approximately 1000 Da. The average MW for base-solubilized Illinois #6 that was not exposed to the fungus was 6000 Da, suggesting solubilizing mechanisms other than base catalysis. A spectrophotometric assay to quantify the microbial conversion of biosolubilized coal was developed. Standard curves were constructed based on the absorbance at 450 nm of different quantities of microbe-solubilized coal. An acid precipitation step was necessary to remove medium and/or microbial metabolites from solubilized coal to prevent overestimation of the extent of coal biosolubilization. Furthermore, the absorption spectra for different coal products varied, necessitating construction of standard curves for individual coals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...