ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1374–1387, doi:10.1038/ismej.2011.12.
    Beschreibung: Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially-dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter in the interaction between reefs and the surrounding ocean remains limited. Here we present the results of a four-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 µmol L-1 DOC and 5.5 X 108 cells L-1 offshore and 68 µmol L-1 DOC and 3.1 X 108 cells L-1 over the reef, respectively) across a four year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Beta-proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing reefs do not exhibit long residence times (unlike those characteristic of atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by ambient microbial assemblages. Our findings thus have interesting implications for the role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef ecosystems.
    Beschreibung: This project was supported by the US National Science Foundation Moorea Coral Reef Long Term Ecological Research project (NSF OCE-0417412) through minigrants to CAC and NSF OCE-0927411 to CAC as well as the MIRADA-LTERs program (NSF DEB-0717390 to LAZ).
    Schlagwort(e): Pyrosequencing ; Dissolved organic carbon ; Bacterioplankton ; MIRADA ; Flow cytometry ; Coral reef
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Maas, A. E., Liu, S., Bolanos, L. M., Widner, B., Parsons, R., Kujawinski, E. B., Blanco-Bercial, L., & Carlson, C. A. Migratory zooplankton excreta and its influence on prokaryotic communities. Frontiers in Marine Science, 7, (2020): 573268, doi:10.3389/fmars.2020.573268.
    Beschreibung: Particulate organic matter (POM) (fecal pellets) from zooplankton has been demonstrated to be an important nutrient source for the pelagic prokaryotic community. Significantly less is known about the chemical composition of the dissolved organic matter (DOM) produced by these eukaryotes and its influence on pelagic ecosystem structure. Zooplankton migrators, which daily transport surface-derived compounds to depth, may act as important vectors of limiting nutrients for mesopelagic microbial communities. In this role, zooplankton may increase the DOM remineralization rate by heterotrophic prokaryotes through the creation of nutrient rich “hot spots” that could potentially increase niche diversity. To explore these interactions, we collected the migratory copepod Pleuromamma xiphias from the northwestern Sargasso Sea and sampled its excreta after 12–16 h of incubation. We measured bulk dissolved organic carbon (DOC), dissolved free amino acids (DFAA) via high performance liquid chromatography and dissolved targeted metabolites via quantitative mass spectrometry (UPLC-ESI-MSMS) to quantify organic zooplankton excreta production and characterize its composition. We observed production of labile DOM, including amino acids, vitamins, and nucleosides. Additionally, we harvested a portion of the excreta and subsequently used it as the growth medium for mesopelagic (200 m) bacterioplankton dilution cultures. In zooplankton excreta treatments we observed a four-fold increase in bacterioplankton cell densities that reached stationary growth phase after five days of dark incubation. Analyses of 16S rRNA gene amplicons suggested a shift from oligotrophs typical of open ocean and mesopelagic prokaryotic communities to more copiotrophic bacterial lineages in the presence of zooplankton excreta. These results support the hypothesis that zooplankton and prokaryotes are engaged in complex and indirect ecological interactions, broadening our understanding of the microbial loop.
    Beschreibung: Funding for this research was provided by Simons Foundation International as part of the BIOS-SCOPE project to AM, LB-B, CC, and EK.
    Schlagwort(e): DOC ; Dissolved metabolites ; Diel vertical migration ; Biogeochemistry ; Copepod
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...