ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electroanalysis 9 (1997), S. 965-977 
    ISSN: 1040-0397
    Keywords: Bioelectronics ; Biosenzors ; Enzyme electrodes ; Enzyme monolayers ; Enzyme multilayers ; Reconstituted enzymes ; Electrically contacted enzyme electrodes ; Bioelectrocatalysis ; Amperometric biosensors ; NAD(P)+-dependent enzyme electrodes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Tailoring of electrically contacted enzyme electrodes provides the grounds for bioelectronic and biosensor systems. Redox-enzymes organized onto electrodes as monolayer assemblies, and chemically functionalized by redox-relay groups, yield electrically contacted enzyme electrodes exhibiting bioelectrocatalytic features. The sensitivity of the enzyme electrode can be enhanced, or tuned, by the organization of multilayer enzyme electrodes and the application of rough metal supports. Enzyme electrodes of extremely efficient electrical communication with the electrode are generated by the reconstitution of apo-flavoenzymes onto relay-FAD monolayers associated with electrodes. The reconstitution process results in an aligned enzyme on the surface, and its effective electrical contact with the electrode yields selective enzyme electrodes of unprecedented high current responses. Integrated electrodes consisting of relay-NAD(P)+-cofactor and enzyme units are generated by the reconstitution of NAD(P)+-dependent enzymes onto a relay-NAD(P)+ monolayer assembly followed by lateral crosslinking of the enzyme network.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 35 (1996), S. 367-385 
    ISSN: 0570-0833
    Keywords: bioelectronics ; enzymes ; optoelectronics ; photoswitchable systems ; Bioelectronics ; Enzymes ; Optoelectronics ; Photoswitchable systems ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Vision and other light-triggered biochemical transformations in plants and living organisms represent a sophisticated biological processes in which optical signals are recorded and transduced as (physico)chemical events. Photoswitchable biomaterials are a new class of substances in which optical signals generate discrete “On” and “Off” states of biological functions, resembling logic gates that flip between 0 and 1 states in response to the changes in electric currents in computers. The (photo)chemistry of photochromic materials has been extensively developed in the past four decades. These materials isomerize reversibly upon light absorption, and the discrete photoisomeric states exhibit distinct spectral and chemical features. Integration of photoisomerizable (or photochromic) units into biomaterials allow their secondary functions such as biocatalysis, binding, and electron transfer to be tailored so that they can be switched on or off. This can be accomplished by chemical modification of the biomaterial by photoisomerizable units and by integration of biomaterials in photoisomerizable microenvironments such as monolayers or polymers. The photoswitchable properties of chemically modified biomaterials originate from the light-induced generation or perturbation of the biologically active site, whereas in photoisomerizable matrices they depend upon the regulation of the physical or chemical features of the photoisomerizable assemblies of polymers, monolayers, or membranes. Light-triggered activation of catalytic biomaterials provides a means of amplifying the recorded optical signal by biochemical transformations, and photostimulated biochemical redox switches allow its electrochemical transduction and amplification. The field of photoswitches based on biomaterials has developed extensively in the past few years within the general context of molecular switching devices and micromachinery. The extensive knowledge on the manipulation of biomaterials through genetic engineering and the fabrication of surfaces modified by biologically active materials enables us to prepare biomaterials with improved optical-switching features. Their application in optoelectronic or bioelectronic devices has been transformed from fantasy to reality. The use of photoswitchable biomaterials in information storage and processing devices (biocomputers), sensors, reversible immunosensors, and biological amplifiers of optical signals has already been demonstrated, but still leaves important future challenges.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...