ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-5535
    Keywords: Lipase ; Bioconversion ; Biocatalysis ; Leukotriene receptor antagonist ; Verlukast ; Screening ; Pseudomonas aeruginosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A search was implemented for a microbial lipase capable of bioconverting a diester (dimethyl 5-(3-(2-(7-chloroquinolin-2-yl)ethyl)phenyl)4,6-dithianon to its S-ester acid, an intermediate in the production of Verlukast (a leukotriene receptor antagonist). Required properties of the sought-after enzyme included a high enantiomeric selectivity (e.e. 〉98%), the formation of only trace amounts of diacid and a high bioconversion rate. This search yielded 57 lipase-producing microorganisms, 18 of which presented detectable bioconversion activity. Thirteen of these microbes were selected for further study based upon their lipase production level and enzyme stability at harvest. Despite their common enzymatic property, namely the hydrolysis of triglycerides, these lipase preparations presented diverse ester acid specific synthesis rates (from 〈0.01 μg/unit/h to 0.98 μg/unit/h) and diacid formation levels (from 0% to 35%). One of these microbes, identified asPseudomonas aeruginosa (strain MB 5001), was found to produce a lipase having all of the above-listed required properties. The initial fermentation process developed in shake flasks was rapidly and successfully scaled up in 23-liter labora bioreactors, achieving a maximum production of 35 units/ml of lipase after 48 h of cultivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth-Science Reviews 169 (2017): 132–145, doi:10.1016/j.earscirev.2017.04.005.
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Description: M.I. Berning is financed by the German Research Foundation Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (Project DFG-1158 SCHR 667/15-1).
    Keywords: Euthecosomatous pteropods ; Ocean acidification ; Calcifying organisms ; Marine ecosystem ; Carbonate chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...