ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 785-793 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fermentation of gaseous substrates such as CO, H2, and CO2 may be performed in a continuous stirred tank reactor, as well as the traditional batch reactor. In this article, the conversion of carbon monoxide by Peptostreptococcus productus is demonstrated in a stirred tank reactor under both mass transfer-controlled and nonmass transfer-controlled conditions. Utilizing a non-steady-state procedure, intrinsic rates are evaluated under non-mass transfer-controlled conditions in a time period of only 5-6 hours. A steady-state procedure was used to evaluate CSTR performance under mass transfer-controlled conditions. The mass transfer coefficient was calculated, followed by the development of a model to predict CSTR behavior for this gas phase substrate.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 29 (1987), S. 633-638 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effects of inoculum size on the kinetics of ethanol fermentation are not well defined in the literature. The purpose of this article is to examine the influence of the initial cell concentration on the modeling of ethanol inhibition. Experimental results show that increasing the inoculum level decreases the severity of ethanol inhibition. The effect of cell concentration can be related to the different inhibitory effects of autogeneously produced versus extracellularly added ethanol. On this basis, it is concluded that the extracellular ethanol concentration in the fermentation media is not the only variable to account for product inhibition modeling. Other fermentation parameters, such as yields and maintenance coefficients, are presented at different levels of initial cell concentration.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 29 (1987), S. 429-435 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Acetate, a by-product of ethanol fermentation by Saccharomyces cerevisiae, has been shown to inhibit cell growth if present in high concentrations. Consequently, acetate has been considered undesirable in systems where the production rate depends upon steady-state growth. Acetate, however, may be desirable in some systems since it increases the specific rate of ethanol production by increasing the maintenance requirements of yeast. In immobilized cell reactors using the crosslinking method, steady state is not achieved and cell overgrowth is a problem. This article presents the results of a study aimed at taking advantage of the use of acetate, both to reduce cell overgrowth and to increase productivity. Various concentrations of acetate were added to batch and plug flow systems, while monitoring the effects on cell growth and ethanol production. The productivity was increased by as much as 50% in an immobilized cell reactor (ICR), while cell growth was greatly reduced.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 774-784 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biological processes may be used to convert gas phase substrates, such as H2S, CH4, CO, H2, and CO2, to useful products. Utilization of these substrates is often a mass transfer limited process, first requiring absorption across the gas-liquid interface and diffusion through the culture medium to the cell surface, prior to reaction. This article presents a method for determining fermentation parameters of a gaseous substrate in convenient batch vessels using a modified Monod model. The procedure is illustrated with experimental data for the conversion of carbon monoxide to acetate by the strict anaerobe Peptostreptococcus productus.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...