ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 17 (1996), S. 1011-1017 
    ISSN: 0173-0835
    Keywords: Strong field gel electrophoresis ; DNA electrophoresis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We present a new model for the motion of a megabase-long DNA molecule undergoing gel electrophoresis. We assume that the dynamics of large segments of DNA is almost deterministic and can be described by a set of simple mechanical equations. This allows the numerical study of gel electrophoresis of ultra-high molecular weight DNA. A strong electric field forces DNA in a gel into a tree-like structure with branches - loops of different sizes. We determined the loop-size distribution function. This distribution has a power law form, confirming the hypothesis of the statistical self-similarity of a moving polymer. We find periodic configuration changes in the motion of a circular polymer, with the average period proportional to the molecular weight. During the period, a polymer goes through three distinct phases: a simple V-shape configuration, a growing tree, and a decaying tree. For a linear polymer this periodicity is much less pronounced because of additional perturbations to the dynamics caused by free ends. A circular polymer stays in a simple V-shaped configuration about 30% of the time, independent of molecular weight (10% for a linear polymer).
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...