ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 18 (1976), S. 95-104 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The apparent activation energy of N-α-benzoyl-L-arginine-ethyl ester (BAEE) hydrolysis by immobilized trypsin varies with the bulk substrate concentration from its maximum value, comparable to that of the free enzyme, to considerably lower values. Thus, with a concentration change from 3 × 10-2 to 10-4 M the apparent activation energy diminishes from 9.5 to 4.5 kcal/mol. This experimental finding is interpreted to be due to Michaelis-type kinetics in a heterogeneous system, in one case reflecting the temperature dependence of the maximal enzyme reaction rate, in another case illustrating the diffusion limited overall reaction at low substrate concentrations. As a consequence it may not be feasible to operate a reaction at elevated temperatures in a high conversion range, since diffusion limitation may restrict the enhancement of the overall reaction rate. Some further data are given concerning the buffer effect on the reaction rate, which should occur due to its limitation by proton transfer in the buffer-free system.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1201-1220 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Glucose oxidation by immobilized glucose oxidase (GlO) and catalase (Cat) has been investigated in batch and continuous reactions for operational studies. The macrokinetics of the process depend on coupled reaction steps and diffusion rates. The problem may be approximated by a simple pseudohomogeneous model taking into account both substrates of glucose oxidase and the intermediate reaction product H2O2. The effectiveness of both enzymes is enhanced in the coupled reaction path, the overall effectiveness nevertheless is very low. H2O2 causes the inactivation of both GlO and Cat. The rates of deactivation depend on the oxidation rates of glucose that give different quasistationary levels of H2O2 concentration. As a first approximation, the deactivation rates may be described by first-order reactions with respect to H2O2.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 21 (1979), S. 2061-2081 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In a previous paper, the overall or macrokinetics of the immobilized glucose oxidase-catalase system has been presented. In this paper a detailed analysis of the interaction of diffusion and reaction in this system will be presented. The mathematical treatment includes two consecutive reactions with two-substrate kinetics. Furthermore, the deactivation of both enzymes due to the intermediate product peroxide is taken into account. The predicted results suggest that the efficiency of the glucose oxidase reaction depends on the concentration ranges of the two substrates. Furthermore, the external mass-transfer rate may cause a shift from glucose limitation to oxygen limitation. The efficiency of the coupled system is always higher than that predicted for the uncoupled reaction path. The calculations show that the economics of the coupled system depend a great deal on the deactivation of the enzymes.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 727-736 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Nonuniform enzyme distributions can be obtained by kinetic control of the immobilization process. Such heterogeneous biocatalysts exhibit higher effectiveness compared to conventional immobilization procedures, when the mass transfer of substrates or products is limiting. Model calculations provide some insight into the relative weight of the immobilization parameters with respect to optimal control of the enzyme distribution. Experimental results and model calculations show that considerably improved effectiveness of biocatalysts can be obtained. The role of external mass transfer is emphasized.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 197 (1979), S. 39-59 
    ISSN: 1432-0878
    Keywords: Lamina ganglionaris ; First, second order neurons ; Neuroanatomy ; Ultrastructure ; Hemipterans (Notonecta glauca, Corixa punctata, Gerris lacustris)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Neuronal elements, i.e. first and second order neurons, of the first optic ganglion of three waterbugs, N. glauca, C. punctata and G. lacustris, are analyzed on the basis of light and electron microscopy. Eight retinula cell axons, leaving each ommatidium, disperse to different cartridges as they enter the laminar outer plexiform layer. Such a pattern of divergence is one of the conditions for neuronal superposition; it is observed for all three species of waterbugs. The manner in which the receptors of a single bundle of ommatidia split of within the lamina, whereby information from receptors up to three or five horizontal rows away can converge upon the same cartridge, differs among the species. Six of the eight axons of retinula cells R1-6, the short visual fibers end at different levels within the bilayered lamina, whereas the central pair of retinula cells R7/8, the long visual fibers, run directly through the lamina to a corresponding unit of the medulla. Four types of monopolar cells L1–L4 are classified; their branching patterns seem to be correlated to the splitting and termination of retinula cell axons. The topographical relationship and synaptic organization between retinula cell terminals and monopolar cells in the two laminar layers are identified by examination of serial ultrathin sections of single Golgi-stained neurons. An attempt is made to correlate some anatomical findings, especially the neuronal superposition, to results from physiological investigations on the hemipteran retina.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...