ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 801-807 
    ISSN: 0006-3592
    Keywords: foaming ; fermentations ; biochemical basis ; biosurfactants ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A detailed physico-chemical analysis of two foaming fungal fermentations was carried out to identify that key groups of compounds responsible for foam formation. Fermentations were carried out on a 20-L scale in a stirred aerated tank, over 7 days, using a commercial, defined medium. The organisms investigated were Penicillium herqueii, a hyphomycete, and an unidentified Ingoldian fungus. Samples of broth and, where possible, foam were analyzed to determine which groups of compounds were concentrated into generated foams. Surface tension, bulk viscosity, and antifoam A concentration were additionally determined in broth samples. To date the cause of foaming in fermentations has been attributed to the surfactant properties of extracellular proteins. This assumption was tested and found to be incomplete as many additional groups of biochemicals were found to be enriched into the foam. The results of the investigation revealed the presence of proteins, carbohydrates, α-keto acids, and lipophilic biosurfactants, particularly extracellular pigments, enriched within stable foams. © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: pyrolysis mass spectrometry ; artificial neural networks ; fermentor broths ; regression analysis ; chemometrics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Binary mixtures of model systems consisting of the antibiotic ampicillin with either Escherichia coli or Staphylococcus auresu were subjected to pyrolysis mass spectrometry (PyMS). To deconvolute the pyrolysis mass spectra, so as to obtain quantitative information on the concentration of ampicilin in the mixtures, partial least squares regression (PLS), principal components regression (PCR), and fully interconnected feedforward artificial neural networks (ANNs) were studied. In the latter case, the weights were modified using the standard backpropagation algorithm, and the nodes used a sigmoidal squsahing funciton. It was found that each of the methods could be used to provide calibration models which gave excellent predictions for the concentrations of ampicillin in samples on which they had not been trained. Furthermore, ANNs trained to predict the amount of ampicilin in E. coli were able to generalise so as to predict the concentration of ampicillin in a S. aureus background, illustrating the robustness of ANNs to rather substantial variations in the biological background. The PyMS of the complex mixture of ampicilin in bacteria could not be expressed simply in terms of additive combinations of the spectra describing the pure components of the mixtures and their relative concentrations. Intermolecular reactions took place in the pyrolysate, leading to a lack of superposition of the spectral components and to a dependence of the normalized mass spectrum on sample size. Samples from fermentations of a single organism in a complex production medium were also analyzed quantitatively for a drug of commercial interest. The drug could also be quantified in a variety of mutant-producing strains cultivated in the same medium. The combination of PyMS and ANNs constitutes a novel, rapid, and convenient method for exploitation in strain improvement screening programs. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 717-724 
    ISSN: 0006-3592
    Keywords: Chromatography costs ; cost equations ; α-galactosidase ; enzyme purification ; affinity chromatography ; ion-exchange chromatography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The purification of α-galactosidase from soybean seeds is a five to six-step procedure consisting of cryoprecipitation, acid precipitation and ammonium sulfate fractionation followed by two or three chromatography steps. The procedures, while not optimized, were carried out in a manner that resulted in 414-515-fold purification, as reported previously. The costs of two purification sequences were compared. In the best case, the preparative-scale costs of stationary phase, reagents, and hardware were $790 per million enzyme units, excluding labor. Stationary phase costs predominated over extraction, chromatography reagent, and eluent costs when the stationary phase is replaced after 10-40 cycles of use. However, if stationary phase life exceeds 50-200 cycles, stationary phase costs become similar in magnitude to eluent and reagent costs. Labor costs, which are process-specific and difficult to estimate, exceed all other costs by a factor of 10-50 at a small scale of operation and constitute a major cost, regardless of scale. This case study provides equations and a frame-work for carrying out a first comparison of costs for multistep purification sequences. Column life, throughput, and scale of operation were found to determine not only the magnitude, but also the relative contributions, of the different components that make up purification costs. This analysis shows that there are major opportunities for reducing purification costs through the development of less expensive stationary phases and the implementation of intelligent process control and automation for process scale chromatography.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 356-363 
    ISSN: 0006-3592
    Keywords: α-galactosidase ; soybeans ; lectin ; scaleup ; chromatography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Soybeans (Glycine max) contain an α-galactosidase that makes up a small fraction of the total protein of the seed. The properties of this enzyme are of interest because of its potential to convert the galactooligosaccharides, stachyose and raffinose, in soybean meal to sugars digestible in the human gastro intestinal tract and thereby increase potential uses of this vegetable protein source in human and animal foods. Study of this enzyme required the isolation of milligram quantities of electrophoretically pure protein from ground soybeans and therefore, scaleup of laboratory procedures by a factor of 300 times. Large scale acid precipitation, ammonium sulfate precipitation, and centrifugal recovery of the precipitated protein allowed α-galactosidase to be isolated from 45.5 kg soybean meal containing 17.1 kg protein, to obtain an enzyme extract with a specific activity of 90 to 100. A novel combination of strong anion exchange and cation exchange chromatography followed by Concanavalin-A affinity chromatography with a methyl α-D mannoside gradient gave α-galactosidase with an average specific activity of 56,000. Ion exchange chromatography preceding Concanavalin-A affinity chromatography allowed elimination of a relatively costly melibiose affinity chromatography step (which followed the Concanavalin-A column In the laboratory procedure) thereby making scaleup practical.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 35 (1990), S. 15-22 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: α-Galactosidase from soybean (Glycine max) was purified by a five-step procedure. The enzyme's natural substrates, raffinose and stachyose, have Km's of 3. 0 mM and 4. 79 mM, respectively. The products, galactose and sucrose, were measured after separation by liquid chromatography. Galactose is a competitive product inhibitor of stachyose and raffinose hydrolysis with a Ki of 0. 12 mM. We determined these parameters by an integral kinetic approach. Stachyose hydrolysis gives a nearly constant level of raffinose shortly after hydrolysis begins. Thus, cleavage of the first α-(1,6)-bond in the tetrasaccharide is the rate-limiting step. Since the stachyose hydrolysis yields raffinose, soybean α-galactosidase simultaneously hydrolyzes two substrates. We present a novel approach for analyzing simultaneous substrate hydrolysis with competitive product inhibition by a modified integral rate expression. The experimentally found kinetic parameters are confirmed by solving the simultaneous equations which describe the hydrolysis. This technique may be applicable to other hydrolytic enzymes with multiple substrates.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...