ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Key words Organic fertilization ; Soil microbial biomass carbon ; Metabolic quotient ; Bioavailability ; Heavy metals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  We studied the long-term effects (12 years) of municipal refuse compost addition on the total organic carbon (TOC), the amount and activity of the microbial biomass (soil microbial biomass C, BC and metabolic quotient qCO2) and heavy metal bioavaiability in soils as compared to manuring with mineral fertilizers (NPK) and farmyard manure (FYM). In addition, we studied the relationships between among the available fraction [Diethylenetriaminopentacetic acid (DTPA) extractable] of heavy metals and their total content, TOC and BC. After 12 years of repeated treatments, the TOC and BC of control and mineral fertilized plots did not differ. Soils treated with FYM and composts showed a significant increase in TOC and BC in response to the increasing amounts of organic C added. Values of the BC/TOC ratio ranged from 1.4 to 2, without any significative differences among soil treatments. The qCO2 increased in the organic-amended soil and may have indicated microbial stress. The total amounts of metals in treated soils were lower than the levels permitted by the European Union in agricultural soils. DTPA-extractable metals increased in amended soils in response to organic C. A multiple regression analysis with stepwise selection of variables was carried out in order to discriminate between the influence exerted on DTPA-extractable metals by their total content, TOC and BC. Results showed that each metal behaved quite differently, suggesting that different mechanisms might be involved in metal bioavailability
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Bioavailability ; CO2−C evolution ; Heavy metals ; Microbial biomass C ; Metabolic quotient ; Soil incubation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this work we studied the influence of Pb, Zn, and Tl on microbial biomass survival and activity during a laboratory incubation of soil. In comparison to uncontaminated soil, the microbial biomass C decreased sharply in soil contaminated with Zn and Tl, whereas the addition of Pb did not have any significant inhibitory effect on the level of microbial biomass C. Zn displayed the greatest biocidal effect, confirmed by the measurement of the death rate quotient (q D). The microbial activity, measured as CO2 evolution, increased significantly in contaminated soils, emphasizing the need of living organisms to expend more energy to survive. The greater demand for energy by microorganisms in order to cope with the toxicity of pollutants was also confirmed by measurement of the metabolic quotient (q CO2). In order to determine whether soil microorganisms affect the bioavailability of these metals through their mobilization and release, we studied the relationships between available Pb, Zn, and Tl, and microbial biomass C. The water-soluble fraction of Tl, available Tl, and Zn, and microbial biomass C were related significantly, but not Pb.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...