ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-11-17
    Description: The BAS1 and BAS2 proteins are both required for activation of GCN4-independent (basal) HIS4 transcription in yeast. BAS1 has an NH2-terminal region similar to those of the myb proto-oncogene family. BAS1 and BAS2, which contains a homeo box, bound to adjacent sites on the HIS4 promoter. The joint requirement of BAS1 and BAS2 for activation is probably not due to cooperative binding or the transcriptional control of one of the genes by the other. Although BAS1 and BAS2 were both required for activation of HIS4 transcription, BAS1 was not required for BAS2-dependent expression of the secreted acid phosphatases. The transcriptional activators of HIS4 have DNA binding domains that are conserved in evolution (BAS1 = Myb, BAS2 = homeo box, GCN4 = Jun). Their interactions, therefore, may be relevant to the control of gene expression in more complex systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tice-Baldwin, K -- Fink, G R -- Arndt, K T -- GM35010/GM/NIGMS NIH HHS/ -- GM39892/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):931-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2683089" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Fungal Proteins/*genetics ; *Gene Expression Regulation ; *Genes, Fungal ; Molecular Sequence Data ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-myb ; Saccharomyces cerevisiae/*genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid ; *Trans-Activators ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-06-23
    Description: In plants, the growth regulator indole-3-acetic acid (IAA) is found both free and conjugated to a variety of amino acids, peptides, and carbohydrates. IAA conjugated to leucine has effects in Arabidopsis thaliana similar to those of free IAA. The ilr1 mutant is insensitive to exogenous IAA-Leu and was used to positionally clone the Arabidopsis ILR1 gene. ILR1 encodes a 48-kilodalton protein that cleaves IAA-amino acid conjugates in vitro and is homologous to bacterial amidohydrolase enzymes. DNA sequences similar to that of ILR1 are found in other plant species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bartel, B -- Fink, G R -- New York, N.Y. -- Science. 1995 Jun 23;268(5218):1745-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7792599" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/chemistry/*genetics/metabolism ; Amino Acid Sequence ; Amino Acids ; Arabidopsis/enzymology/*genetics ; *Arabidopsis Proteins ; Base Sequence ; Cloning, Molecular ; *Genes, Plant ; Hydrolysis ; Indoleacetic Acids/*metabolism/pharmacology ; Leucine/metabolism ; Molecular Sequence Data ; Mutation ; Plant Growth Regulators/*metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-09
    Description: A Candida albicans gene (CPH1) was cloned that encodes a protein homologous to Saccharomyces cerevisiae Ste12p, a transcription factor that is the target of the pheromone response mitogen-activated protein kinase cascade. CPH1 complements both the mating defect of ste12 haploids and the filamentous growth defect of ste12/ste12 diploids. Candida albicans strains without a functional CPH1 gene (cph1/cph1) show suppressed hyphal formation on solid medium. However, cph1/cph1 strains can still form hyphae in liquid culture and in response to serum. Thus, filamentous growth may be activated in C. albicans by the same signaling kinase cascade that activates Ste12p in S. cerevisiae; however, alternative pathways may exist in C. albicans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, H -- Kohler, J -- Fink, G R -- GM402661/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1723-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992058" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Candida albicans/cytology/genetics/*growth & development ; Cloning, Molecular ; Culture Media ; Fungal Proteins/chemistry/*genetics/physiology ; *Genes, Fungal ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Saccharomyces cerevisiae/cytology/genetics/growth & development ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/chemistry/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-09-19
    Description: Two unstable mutations at the his4 locus of yeast are due to the insertion of the transposable elements Ty912 and Ty917 into the his4 regulatory region. The two transposons are related, one being derived from the other by a substitution of 4000 base pairs of DNA. Element Ty912 includes identical terminal repeats, whereas the terminal repeats of Ty917 are not identical. Transposition of Ty912 or Ty917 generates 5-base-pair duplications of the target DNA at either end of the element. Expression and reversion of a his4 gene containing Ty912 or Ty917 is controlled by three unlinked regulatory genes. The properties of these regulatory genes are similar to those described for the controlling elements in maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roeder, G S -- Farabaugh, P J -- Chaleff, D T -- Fink, G R -- CA23441/CA/NCI NIH HHS/ -- GM07617/GM/NIGMS NIH HHS/ -- GM15408/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1980 Sep 19;209(4463):1375-80.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6251544" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Cloning, Molecular/methods ; *DNA Transposable Elements ; DNA, Fungal/genetics ; Genes, Regulator ; Genetic Linkage ; Histidine/*genetics ; Saccharomyces cerevisiae/*genetics ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-04-24
    Description: Five ICR-170--induced mutations at the His4 locus in yeast are +1 G.C (G, guanine; C, cytosine) additions in DNA regions that contain multiple G.C base pairs. These mutations represents both nonsuppressible and suppressible alleles. All externally, suppressible frameshift mutations occur in glycine and proline codons to produce the four-base codons GGGU (U, uracil), GGGG, and CCCU. This implies that suppression of these four-base codons in yeast, as in bacteria, involves a four-base anticodon or its functional equivalent. Two identical four-base codons (CCCU) at widely separate regions with His4 are not suppressed equally.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Donahue, T F -- Farabaugh, P J -- Fink, G R -- New York, N.Y. -- Science. 1981 Apr 24;212(4493):455-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7010605" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Codon ; DNA, Fungal/genetics ; Glycine/*genetics ; Histidine/genetics ; Mutation ; Proline/*genetics ; *RNA, Messenger ; Saccharomyces cerevisiae/*genetics ; *Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...