ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-19
    Description: The derivation of human ES cells (hESCs) from human blastocysts represents one of the milestones in stem cell biology. The full potential of hESCs in research and clinical applications requires a detailed understanding of the genetic network that governs the unique properties of hESCs. Here, we report a genome-wide RNA interference screen to identify genes which regulate self-renewal and pluripotency properties in hESCs. Interestingly, functionally distinct complexes involved in transcriptional regulation and chromatin remodelling are among the factors identified in the screen. To understand the roles of these potential regulators of hESCs, we studied transcription factor PRDM14 to gain new insights into its functional roles in the regulation of pluripotency. We showed that PRDM14 regulates directly the expression of key pluripotency gene POU5F1 through its proximal enhancer. Genome-wide location profiling experiments revealed that PRDM14 colocalized extensively with other key transcription factors such as OCT4, NANOG and SOX2, indicating that PRDM14 is integrated into the core transcriptional regulatory network. More importantly, in a gain-of-function assay, we showed that PRDM14 is able to enhance the efficiency of reprogramming of human fibroblasts in conjunction with OCT4, SOX2 and KLF4. Altogether, our study uncovers a wealth of novel hESC regulators wherein PRDM14 exemplifies a key transcription factor required for the maintenance of hESC identity and the reacquisition of pluripotency in human somatic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chia, Na-Yu -- Chan, Yun-Shen -- Feng, Bo -- Lu, Xinyi -- Orlov, Yuriy L -- Moreau, Dimitri -- Kumar, Pankaj -- Yang, Lin -- Jiang, Jianming -- Lau, Mei-Sheng -- Huss, Mikael -- Soh, Boon-Seng -- Kraus, Petra -- Li, Pin -- Lufkin, Thomas -- Lim, Bing -- Clarke, Neil D -- Bard, Frederic -- Ng, Huck-Hui -- England -- Nature. 2010 Nov 11;468(7321):316-20. doi: 10.1038/nature09531. Epub 2010 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Regulation Laboratory, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20953172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cellular Reprogramming/genetics ; DNA-Binding Proteins/genetics/metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation/genetics ; Genome, Human/*genetics ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mice ; Octamer Transcription Factor-3/genetics/metabolism ; *RNA Interference ; Repressor Proteins/genetics/*metabolism ; SOXB1 Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-13
    Description: The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models. Application of this technology to engineer genes in rats has not previously been possible because of the absence of germline-competent ES cells in this species. We have recently established authentic rat ES cells. Here we report the generation of gene knockout rats using the ES-cell-based gene targeting technology. We designed a targeting vector to disrupt the tumour suppressor gene p53 (also known as Tp53) in rat ES cells by means of homologous recombination. p53 gene-targeted rat ES cells can be routinely generated. Furthermore, the p53 gene-targeted mutation in the rat ES-cell genome can transmit through the germ line via ES-cell rat chimaeras to create p53 gene knockout rats. The rat is the most widely used animal model in biological research. The establishment of gene targeting technology in rat ES cells, in combination with advances in genomics and the vast amount of research data on physiology and pharmacology in this species, now provide a powerful new platform for the study of human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Chang -- Li, Ping -- Wu, Nancy L -- Yan, Youzhen -- Ying, Qi-Long -- 1R01 RR025881/RR/NCRR NIH HHS/ -- R01 OD010926/OD/NIH HHS/ -- R01 RR025881/RR/NCRR NIH HHS/ -- R01 RR025881-01A2/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 9;467(7312):211-3. doi: 10.1038/nature09368. Epub 2010 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Culture Techniques ; Embryo, Mammalian/cytology ; Embryonic Stem Cells/*cytology ; Female ; Gene Knockout Techniques/*methods ; *Genes, p53 ; Germ-Line Mutation ; Male ; Mice ; Molecular Sequence Data ; Rats/*genetics ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Recombination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-12-10
    Description: Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malkin, D -- Li, F P -- Strong, L C -- Fraumeni, J F Jr -- Nelson, C E -- Kim, D H -- Kassel, J -- Gryka, M A -- Bischoff, F Z -- Tainsky, M A -- 34936/PHS HHS/ -- 5-T32-CA09299/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1233-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetics, Massachusetts General Hospital Cancer Center, Charlestown 02129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1978757" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Breast Neoplasms/*genetics ; Chromosomes, Human, Pair 17 ; Cloning, Molecular ; Codon ; DNA/genetics ; Deoxyribonucleases, Type II Site-Specific ; *Genes, p53 ; Genetic Testing ; Germ Cells ; Humans ; Molecular Sequence Data ; *Mutation ; Neoplastic Syndromes, Hereditary/*genetics ; Pedigree ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length ; Repetitive Sequences, Nucleic Acid ; Sarcoma/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-08
    Description: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnable, Patrick S -- Ware, Doreen -- Fulton, Robert S -- Stein, Joshua C -- Wei, Fusheng -- Pasternak, Shiran -- Liang, Chengzhi -- Zhang, Jianwei -- Fulton, Lucinda -- Graves, Tina A -- Minx, Patrick -- Reily, Amy Denise -- Courtney, Laura -- Kruchowski, Scott S -- Tomlinson, Chad -- Strong, Cindy -- Delehaunty, Kim -- Fronick, Catrina -- Courtney, Bill -- Rock, Susan M -- Belter, Eddie -- Du, Feiyu -- Kim, Kyung -- Abbott, Rachel M -- Cotton, Marc -- Levy, Andy -- Marchetto, Pamela -- Ochoa, Kerri -- Jackson, Stephanie M -- Gillam, Barbara -- Chen, Weizu -- Yan, Le -- Higginbotham, Jamey -- Cardenas, Marco -- Waligorski, Jason -- Applebaum, Elizabeth -- Phelps, Lindsey -- Falcone, Jason -- Kanchi, Krishna -- Thane, Thynn -- Scimone, Adam -- Thane, Nay -- Henke, Jessica -- Wang, Tom -- Ruppert, Jessica -- Shah, Neha -- Rotter, Kelsi -- Hodges, Jennifer -- Ingenthron, Elizabeth -- Cordes, Matt -- Kohlberg, Sara -- Sgro, Jennifer -- Delgado, Brandon -- Mead, Kelly -- Chinwalla, Asif -- Leonard, Shawn -- Crouse, Kevin -- Collura, Kristi -- Kudrna, Dave -- Currie, Jennifer -- He, Ruifeng -- Angelova, Angelina -- Rajasekar, Shanmugam -- Mueller, Teri -- Lomeli, Rene -- Scara, Gabriel -- Ko, Ara -- Delaney, Krista -- Wissotski, Marina -- Lopez, Georgina -- Campos, David -- Braidotti, Michele -- Ashley, Elizabeth -- Golser, Wolfgang -- Kim, HyeRan -- Lee, Seunghee -- Lin, Jinke -- Dujmic, Zeljko -- Kim, Woojin -- Talag, Jayson -- Zuccolo, Andrea -- Fan, Chuanzhu -- Sebastian, Aswathy -- Kramer, Melissa -- Spiegel, Lori -- Nascimento, Lidia -- Zutavern, Theresa -- Miller, Beth -- Ambroise, Claude -- Muller, Stephanie -- Spooner, Will -- Narechania, Apurva -- Ren, Liya -- Wei, Sharon -- Kumari, Sunita -- Faga, Ben -- Levy, Michael J -- McMahan, Linda -- Van Buren, Peter -- Vaughn, Matthew W -- Ying, Kai -- Yeh, Cheng-Ting -- Emrich, Scott J -- Jia, Yi -- Kalyanaraman, Ananth -- Hsia, An-Ping -- Barbazuk, W Brad -- Baucom, Regina S -- Brutnell, Thomas P -- Carpita, Nicholas C -- Chaparro, Cristian -- Chia, Jer-Ming -- Deragon, Jean-Marc -- Estill, James C -- Fu, Yan -- Jeddeloh, Jeffrey A -- Han, Yujun -- Lee, Hyeran -- Li, Pinghua -- Lisch, Damon R -- Liu, Sanzhen -- Liu, Zhijie -- Nagel, Dawn Holligan -- McCann, Maureen C -- SanMiguel, Phillip -- Myers, Alan M -- Nettleton, Dan -- Nguyen, John -- Penning, Bryan W -- Ponnala, Lalit -- Schneider, Kevin L -- Schwartz, David C -- Sharma, Anupma -- Soderlund, Carol -- Springer, Nathan M -- Sun, Qi -- Wang, Hao -- Waterman, Michael -- Westerman, Richard -- Wolfgruber, Thomas K -- Yang, Lixing -- Yu, Yeisoo -- Zhang, Lifang -- Zhou, Shiguo -- Zhu, Qihui -- Bennetzen, Jeffrey L -- Dawe, R Kelly -- Jiang, Jiming -- Jiang, Ning -- Presting, Gernot G -- Wessler, Susan R -- Aluru, Srinivas -- Martienssen, Robert A -- Clifton, Sandra W -- McCombie, W Richard -- Wing, Rod A -- Wilson, Richard K -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Genomics, Iowa State University, Ames, IA 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Copy Number Variations ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Inbreeding ; MicroRNAs/genetics ; Molecular Sequence Data ; Ploidies ; RNA, Plant/genetics ; Recombination, Genetic ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-09
    Description: Cells are organized on length scales ranging from angstrom to micrometres. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343696/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343696/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Pilong -- Banjade, Sudeep -- Cheng, Hui-Chun -- Kim, Soyeon -- Chen, Baoyu -- Guo, Liang -- Llaguno, Marc -- Hollingsworth, Javoris V -- King, David S -- Banani, Salman F -- Russo, Paul S -- Jiang, Qiu-Xing -- Nixon, B Tracy -- Rosen, Michael K -- P30 CA142543/CA/NCI NIH HHS/ -- P41 GM103622/GM/NIGMS NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01 GM056322-13/GM/NIGMS NIH HHS/ -- R01-GM088745/GM/NIGMS NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- RR-08630/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 7;483(7389):336-40. doi: 10.1038/nature10879.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8812, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398450" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 2-3 Complex/metabolism ; Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Binding Sites ; Biopolymers/chemistry/metabolism ; Fluorescence Recovery After Photobleaching ; HeLa Cells ; Humans ; Ligands ; Membrane Proteins/chemistry/metabolism ; Multiprotein Complexes/*chemistry/*metabolism ; Oncogene Proteins/chemistry/metabolism ; *Phase Transition ; Phosphorylation ; Proline-Rich Protein Domains ; Protein Structure, Quaternary ; Proteins/*chemistry/*metabolism ; *Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry/metabolism ; src Homology Domains
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-21
    Description: Interferon regulatory factor 4 (IRF4) is an IRF family transcription factor with critical roles in lymphoid development and in regulating the immune response. IRF4 binds DNA weakly owing to a carboxy-terminal auto-inhibitory domain, but cooperative binding with factors such as PU.1 or SPIB in B cells increases binding affinity, allowing IRF4 to regulate genes containing ETS-IRF composite elements (EICEs; 5'-GGAAnnGAAA-3'). Here we show that in mouse CD4(+) T cells, where PU.1/SPIB expression is low, and in B cells, where PU.1 is well expressed, IRF4 unexpectedly can cooperate with activator protein-1 (AP1) complexes to bind to AP1-IRF4 composite (5'-TGAnTCA/GAAA-3') motifs that we denote as AP1-IRF composite elements (AICEs). Moreover, BATF-JUN family protein complexes cooperate with IRF4 in binding to AICEs in pre-activated CD4(+) T cells stimulated with IL-21 and in T(H)17 differentiated cells. Importantly, BATF binding was diminished in Irf4(-/-) T cells and IRF4 binding was diminished in Batf(-/-) T cells, consistent with functional cooperation between these factors. Moreover, we show that AP1 and IRF complexes cooperatively promote transcription of the Il10 gene, which is expressed in T(H)17 cells and potently regulated by IL-21. These findings reveal that IRF4 can signal via complexes containing ETS or AP1 motifs depending on the cellular context, thus indicating new approaches for modulating IRF4-dependent transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537508/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537508/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Peng -- Spolski, Rosanne -- Liao, Wei -- Wang, Lu -- Murphy, Theresa L -- Murphy, Kenneth M -- Leonard, Warren J -- ZIA HL005402-20/Intramural NIH HHS/ -- ZIA HL005402-21/Intramural NIH HHS/ -- ZIA HL005408-05/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Oct 25;490(7421):543-6. doi: 10.1038/nature11530. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA. lip3@nhlbi.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992523" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; B-Lymphocytes/metabolism ; Base Sequence ; Basic-Leucine Zipper Transcription Factors/deficiency/genetics/*metabolism ; Binding Sites ; CD4-Positive T-Lymphocytes/cytology/*metabolism ; Cell Differentiation ; Female ; Interferon Regulatory Factors/deficiency/genetics/*metabolism ; Interleukin-10/genetics ; Interleukins/immunology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Nucleotide Motifs ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-jun/*metabolism ; Signal Transduction ; Th17 Cells/cytology/immunology ; Trans-Activators/metabolism ; Transcription Factor AP-1/metabolism ; *Transcription, Genetic ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-24
    Description: Although feast and famine cycles illustrate that remodelling of adipose tissue in response to fluctuations in nutrient availability is essential for maintaining metabolic homeostasis, the underlying mechanisms remain poorly understood. Here we identify fibroblast growth factor 1 (FGF1) as a critical transducer in this process in mice, and link its regulation to the nuclear receptor PPARgamma (peroxisome proliferator activated receptor gamma), which is the adipocyte master regulator and the target of the thiazolidinedione class of insulin sensitizing drugs. FGF1 is the prototype of the 22-member FGF family of proteins and has been implicated in a range of physiological processes, including development, wound healing and cardiovascular changes. Surprisingly, FGF1 knockout mice display no significant phenotype under standard laboratory conditions. We show that FGF1 is highly induced in adipose tissue in response to a high-fat diet and that mice lacking FGF1 develop an aggressive diabetic phenotype coupled to aberrant adipose expansion when challenged with a high-fat diet. Further analysis of adipose depots in FGF1-deficient mice revealed multiple histopathologies in the vasculature network, an accentuated inflammatory response, aberrant adipocyte size distribution and ectopic expression of pancreatic lipases. On withdrawal of the high-fat diet, this inflamed adipose tissue fails to properly resolve, resulting in extensive fat necrosis. In terms of mechanisms, we show that adipose induction of FGF1 in the fed state is regulated by PPARgamma acting through an evolutionarily conserved promoter proximal PPAR response element within the FGF1 gene. The discovery of a phenotype for the FGF1 knockout mouse establishes the PPARgamma-FGF1 axis as critical for maintaining metabolic homeostasis and insulin sensitization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonker, Johan W -- Suh, Jae Myoung -- Atkins, Annette R -- Ahmadian, Maryam -- Li, Pingping -- Whyte, Jamie -- He, Mingxiao -- Juguilon, Henry -- Yin, Yun-Qiang -- Phillips, Colin T -- Yu, Ruth T -- Olefsky, Jerrold M -- Henry, Robert R -- Downes, Michael -- Evans, Ronald M -- DK057978/DK/NIDDK NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- DK063491/DK/NIDDK NIH HHS/ -- DK090962/DK/NIDDK NIH HHS/ -- HL105278/HL/NHLBI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- R01 DK033651/DK/NIDDK NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R01 HL105278-21/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R24 DK090962-02/DK/NIDDK NIH HHS/ -- R37 DK033651/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- R37 DK057978-34/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-10/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 17;485(7398):391-4. doi: 10.1038/nature10998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22522926" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/drug effects/metabolism/pathology ; Animals ; Base Sequence ; Cell Size/drug effects ; Diabetes Mellitus, Experimental/chemically induced/genetics/pathology ; Diet, High-Fat/adverse effects ; Fibroblast Growth Factor 1/deficiency/*genetics/*metabolism ; *Homeostasis/drug effects ; Humans ; Inflammation/genetics ; Insulin/metabolism ; Insulin Resistance ; Intra-Abdominal Fat/drug effects/*metabolism/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Necrosis/enzymology ; PPAR gamma/*metabolism ; Promoter Regions, Genetic/genetics ; Response Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-09-29
    Description: The baculovirus antiapoptotic protein p35 inhibited the proteolytic activity of human interleukin-1 beta converting enzyme (ICE) and three of its homologs in enzymatic assays. Coexpression of p35 prevented the autoproteolytic activation of ICE from its precursor form and blocked ICE-induced apoptosis. Inhibition of enzymatic activity correlated with the cleavage of p35 and the formation of a stable ICE-p35 complex. The ability of p35 to block apoptosis in different pathways and in distantly related organisms suggests a central and conserved role for ICE-like proteases in the induction of apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bump, N J -- Hackett, M -- Hugunin, M -- Seshagiri, S -- Brady, K -- Chen, P -- Ferenz, C -- Franklin, S -- Ghayur, T -- Li, P -- AI 38262/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 29;269(5232):1885-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BASF Bioresearch Corporation, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569933" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Binding Sites ; Binding, Competitive ; Caspase 1 ; Cell Line ; Cysteine Endopeptidases/*metabolism ; Cysteine Proteinase Inhibitors/genetics/*metabolism/pharmacology ; Enzyme Activation/drug effects ; Humans ; Inhibitor of Apoptosis Proteins ; Molecular Sequence Data ; Recombinant Proteins/pharmacology ; Transfection ; Viral Proteins/genetics/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...