ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-09-27
    Description: Serial human immunodeficiency virus type-1 (HIV-1) isolates were obtained from five individuals with acquired immunodeficiency syndrome (AIDS) who changed therapy to 2',3'-dideoxyinosine (ddI) after at least 12 months of treatment with 3'-azido-3'-deoxythymidine (zidovudine, AZT). The in vitro sensitivity to ddI decreased during the 12 months following ddI initiation, whereas AZT sensitivity increased. Analysis of the reverse transcriptase coding region revealed a mutation associated with reduced sensitivity to ddI. When this mutation was present in the same genome as a mutation known to confer AZT resistance, the isolates showed increased sensitivity to AZT. Analysis of HIV-1 variants confirmed that the ddI resistance mutation alone conferred ddI and 2',3'-dideoxycytidine resistance, and suppressed the effect of the AZT resistance mutation. The use of combination therapy for HIV-1 disease may prevent drug-resistant isolates from emerging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉St Clair, M H -- Martin, J L -- Tudor-Williams, G -- Bach, M C -- Vavro, C L -- King, D M -- Kellam, P -- Kemp, S D -- Larder, B A -- New York, N.Y. -- Science. 1991 Sep 27;253(5027):1557-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Burroughs Wellcome Co., Research Triangle Park, NC 27709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1716788" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*drug therapy/microbiology ; Base Sequence ; DNA, Viral/*genetics ; Didanosine/*pharmacology/*therapeutic use ; Drug Resistance, Microbial ; Genotype ; HIV-1/*drug effects/enzymology/isolation & purification ; Humans ; Molecular Sequence Data ; *Mutation ; Oligodeoxyribonucleotides ; RNA-Directed DNA Polymerase/*genetics/metabolism ; Zidovudine/pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-12-09
    Description: AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor channels mediate the fast component of excitatory postsynaptic currents in the central nervous system. Site-selective nuclear RNA editing controls the calcium permeability of these channels, and RNA editing at a second site is shown here to affect the kinetic aspects of these channels in rat brain. In three of the four AMPA receptor subunits (GluR-B, -C, and -D), intronic elements determine a codon switch (AGA, arginine, to GGA, glycine) in the primary transcripts in a position termed the R/G site, which immediately precedes the alternatively spliced modules "flip" and "flop." The extent of editing at this site progresses with brain development in a manner specific for subunit and splice form, and edited channels possess faster recovery rates from desensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lomeli, H -- Mosbacher, J -- Melcher, T -- Hoger, T -- Geiger, J R -- Kuner, T -- Monyer, H -- Higuchi, M -- Bach, A -- Seeburg, P H -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1709-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992055" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Brain/embryology/*metabolism ; Cell Nucleus/metabolism ; Exons ; Glutamic Acid/pharmacology ; Glycine/genetics ; Introns ; Kinetics ; Membrane Potentials ; Molecular Sequence Data ; Oocytes ; PC12 Cells ; Patch-Clamp Techniques ; *RNA Editing ; Rats ; Rats, Wistar ; Receptors, AMPA/*genetics/*metabolism ; Recombinant Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...