ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 1731, doi: 10.3389/fmicb.2016.01731.
    Description: The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights the importance of high-resolution time series sampling, especially during the relatively under-sampled Antarctic winter and spring, which enabled us to discover seasonal changes in bacterial community composition that preceded the summertime phytoplankton bloom.
    Description: CL was partially funded by the Graduate School and the Department of Ecology and Evolutionary Biology at Brown University and the Brown University-Marine Biological Laboratory Joint Graduate Program. This material is based upon work supported by the National Science Foundation under Grant Nos. ANT-1142114 to LA-Z, OPP-0823101 and PLR-1440435 to HD, and ANT-1141993 to JR.
    Keywords: 16S rRNA gene ; Ecological succession ; Antarctica ; Bacterial production ; Bacterial community composition ; Polaribacter ; Pelagibacter ubique (SAR11) ; Rhodobacteraceae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2011. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 64: 205-220, doi:10.3354/ame01519.
    Description: Along the western Antarctic Peninsula, marine bacterioplankton respond to the spring phytoplankton bloom with increases in abundance, production and growth rates, and a seasonal succession in bacterial community composition (BCC). We investigated the response of the bacterial community to experimental additions of glucose and ammonium, alone or in combination, incubated in replicate carboys (each: 50 l) over 10 d in November 2006. Changes in bulk properties (abundance, production rates) in the incubations resembled observations in the nearshore environment over 8 seasons (2001 to 2002 through 2008 to 2009) at Palmer Stn (64.8°S, 64.1°W). Changes in bulk properties and BCC in ammonium-amended carboys were small relative to controls, compared to the glucose-amended treatments. The BCC in Day 0 and Day 10 controls and ammonium treatments were 〉72% similar when assessed by denaturing-gradient gel electrophoresis (DGGE), length heterogeneity polymerase chain reaction (LH-PCR) and capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) fingerprinting techniques. Bacterial abundance increased 2- to 10-fold and leucine incorporation rates increased 2- to 30-fold in the glucose treatments over 6 d. The BCC in carboys receiving glucose (with or without ammonium) remained 〉60% similar to that in Day 0 controls at 6 d and evolved to 〈20% similar to that in Day 0 controls after 10 d incubation. The increases in bacterial production rates, and the changes in BCC, suggest that selection for glucose-utilizing bacteria was slow under the ambient environmental conditions. The results suggest that organic carbon enrichment is a major factor influencing the observed winter-to-summer increase in bacterial abundance and activity. In contrast, the BCC was relatively robust, changing little until after repeated additions of glucose and prolonged (~10 d) incubation.
    Description: H.W.D. and A.E.M. were supported by US NSF grants ANT-0632278 and ANT- 0632389, respectively. This research was partly supported by NSF OPP-0217282 (Palmer LTER). J.F.G. was supported by the Institut Français pour la Recherche et la Technologie Polaires (IFRTP).
    Keywords: Antarctica ; Bacterial community composition ; Bioassay ; Marine bacterioplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...