ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: Azorhizobium caulinodans ; crack entry ; intercellular colonization ; naringenin ; rice ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Recently, evidence has been obtained that naturally occurring rhizobia, isolated from the nodules of non-legume Parasponia species and from some tropical legumes, are able to enter the roots of rice, wheat and maize at emerging lateral roots by crack entry. We have now investigated whether Azorhizobium caulinodans strain ORS571, which induces root and stem nodules on the tropical legume Sesbania rostrata as a result of crack entry invasion of emerging lateral roots, might also enter rice and wheat by a similar route. Following inoculation with ORS571 carrying a lacZ reporter gene, azorhizobia were observed microscopically within the cracks associated with emerging lateral roots of rice and wheat. A high proportion of inoculated rice and wheat plants had colonized lateral root cracks. The flavanone naringenin at 10 and 10 M stimulated significantly the colonization of lateral root cracks and also intercellular colonization of wheat roots. Naringenin does not appear to be acting as a carbon source and may act as a signal molecule for intercellular colonization of rice and wheat by ORS571 by a mechanism which is nod gene-independent, unlike nodule formation in Sesbania rostrata. The opportunity now arises to compare and to contrast the ability of Azorhizobium caulinodans with that of other rhizobia, such as Parasponia rhizobia, to intercellularly colonize the roots of non-legume crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Arabidopsis thaliana ; Azorhizobium caulinodans ; flavonoids ; lateral root crack ; nod genes ; rhizobia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract When interactions between diazotrophic bacteria and non-legume plants are studied within the context of trying to extend biological nitrogen fixation to non-legume crops, an important first step is to establish reproducible internal colonization at high frequency of these plants. Using Azorhizobium caulinodans ORS571 (which induces stem and root nodules on the tropical legume Sesbania rostrata), tagged with a constitutively expressed lacZ reporter gene, we have studied the possibilities of internal colonization of the root system of the model dicot Arabidopsis thaliana. ORS571 was found to be able to enter A. thaliana roots after first colonizing lateral root cracks (LRCs), at the points of emergence of lateral roots. Cytological studies showed that after LRC colonization, bacteria moved into the intercellular space between the cortical and endodermal cell layers of roots. In our experimental conditions, this LRC and intercellular colonization are reproducible and occur at high frequency, although the level of colonization at each site is low. The flavonoids naringenin and daidzein, at low concentrations, were found to significantly stimulate (at the p=0.01 level) the frequency of LRC and intercellular colonization of A. thaliana roots by A. caulinodans. The role in colonization of the structural nodABC genes, as well as the regulatory gene nodD, was studied and it was found that both colonization and flavonoid stimulation of colonization are nod gene-independent. These systems should now enable the various genetic and physiological factors which are limiting both for rhizobial colonization and for endophytic nitrogen fixation in non-legumes, to be investigated. In particular, the use of A. thaliana, which has many advantages over other plants for molecular genetic studies, to study interactions between diazotrophic bacteria and non-legume dicots, should provide the means of identifying and understanding the mechanisms by which plant genes are involved in these interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...