ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Azimuth; Center for Marine Environmental Sciences; CT; DATE/TIME; Distance; LATITUDE; LONGITUDE; Magnitude; MARUM; NEPTUNE; off west coast of Vancouver Island, British Columbia; Time delay; Underway cruise track measurements  (1)
Collection
Keywords
  • Azimuth; Center for Marine Environmental Sciences; CT; DATE/TIME; Distance; LATITUDE; LONGITUDE; Magnitude; MARUM; NEPTUNE; off west coast of Vancouver Island, British Columbia; Time delay; Underway cruise track measurements  (1)
  • geohazards  (1)
  • mass movements  (1)
  • subaqueous landslides  (1)
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Römer, Miriam; Riedel, Michael; Scherwath, Martin; Heesemann, Martin; Spence, George D (2016): Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Geochemistry, Geophysics, Geosystems, 17(9), 3797-3814, https://doi.org/10.1002/2016GC006528
    Publication Date: 2023-11-25
    Description: Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant subsurface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.
    Keywords: Azimuth; Center for Marine Environmental Sciences; CT; DATE/TIME; Distance; LATITUDE; LONGITUDE; Magnitude; MARUM; NEPTUNE; off west coast of Vancouver Island, British Columbia; Time delay; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 1075 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...