ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Autonomous underwater vehicle  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 9765-9773, doi:10.1029/2018GL078543.
    Description: A REMUS 600 autonomous underwater vehicle was used to measure turbulent mixing within the far‐field Chesapeake Bay plume during the transition to upwelling. Prior to the onset of upwelling, the plume was mixed by a combination of energetic downwelling winds and bottom‐generated shear resulting in a two‐layer plume structure. Estimates of turbulent dissipation and buoyancy flux from a nose‐mounted microstructure system indicate that scalar exchange within the plume was patchy and transient, with direct wind mixing constrained to the near surface by stratification within the plume. Changing wind and tide conditions contributed to temporal variability. Following the separation of the upper plume from the coast, alongshore shear became a significant driver of mixing on the shoreward edge of the plume.
    Description: NSF Grant Numbers: OCE‐1334231, OCE‐1745258, OCE‐1334398
    Description: 2019-03-23
    Keywords: River plume ; Upwelling ; Turbulence ; Autonomous underwater vehicle ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...