ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atomic and Molecular Physics  (2)
  • Autistic Disorder/*chemically induced/*genetics/metabolism  (1)
  • 1
    Publication Date: 2014-02-08
    Description: We report that the oxytocin-mediated neuroprotective gamma-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery is abolished in the valproate and fragile X rodent models of autism. During delivery and subsequently, hippocampal neurons in these models have elevated intracellular chloride levels, increased excitatory GABA, enhanced glutamatergic activity, and elevated gamma oscillations. Maternal pretreatment with bumetanide restored in offspring control electrophysiological and behavioral phenotypes. Conversely, blocking oxytocin signaling in naive mothers produced offspring having electrophysiological and behavioral autistic-like features. Our results suggest a chronic deficient chloride regulation in these rodent models of autism and stress the importance of oxytocin-mediated GABAergic inhibition during the delivery process. Our data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tyzio, Roman -- Nardou, Romain -- Ferrari, Diana C -- Tsintsadze, Timur -- Shahrokhi, Amene -- Eftekhari, Sanaz -- Khalilov, Ilgam -- Tsintsadze, Vera -- Brouchoud, Corinne -- Chazal, Genevieve -- Lemonnier, Eric -- Lozovaya, Natalia -- Burnashev, Nail -- Ben-Ari, Yehezkel -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):675-9. doi: 10.1126/science.1247190.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mediterranean Institute of Neurobiology (INMED), U901, INSERM, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*chemically induced/*genetics/metabolism ; Behavior, Animal ; Bumetanide/administration & dosage ; Chlorides/metabolism ; *Cytoprotection ; Disease Models, Animal ; Female ; Fragile X Mental Retardation Protein/genetics ; Maternal-Fetal Exchange ; Mice ; Oxytocin/*metabolism ; Parturition ; Pregnancy ; Rats ; Valproic Acid/pharmacology ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1) - S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n) central dot O2) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt.OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.
    Keywords: Atomic and Molecular Physics
    Type: NASA-TM-111534 , NAS 1.15:111534 , Meeting of the Southeastern Section of the American Physical Society; Nov 10, 1994 - Nov 12, 1994; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1)-S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n).02) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt-OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.
    Keywords: Atomic and Molecular Physics
    Type: NASA-TM-111524 , NAS 1.15:111524 , Meeting of the Southeastern Section of The American Physical Society; Nov 10, 1994 - Nov 12, 1994; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...