ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-22
    Description: Author(s): Souvik Chatterjee and Takashi Nakajima We theoretically investigate the effects of strong couplings in resonant Auger processes under the combination of strong resonant x-ray and nearly resonant optical pulses. The x-ray field couples the ground state with a core-excited state, while the optical field couples the core-excited state with ... [Phys. Rev. A 91, 043413] Published Tue Apr 21, 2015
    Keywords: Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-26
    Description: Author(s): Souvik Chatterjee and Takashi Nakajima We theoretically investigate the electron dynamics in Ne atoms involving core-excited states through the Ramsey scheme with a pair of time-delayed x-ray pulses. Irradiation of Ne atoms by the ∼ 1 femtosecond x-ray pulse simultaneously populates two core-excited states, and an identical but time-delay… [Phys. Rev. A 94, 023417] Published Wed Aug 24, 2016
    Keywords: Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-21
    Description: Author(s): Souvik Chatterjee, Bibhas Dutta, and S. S. Bhattacharyya We have numerically explored the asymmetry in the branching ratio of the photofragments in the photodissociation of HD + (neutral D and neutral H), leading to the possibility of localization of the electron on a chosen nucleus by careful tuning of the laser parameters. For two different frequencies w... [Phys. Rev. A 83, 063413] Published Mon Jun 20, 2011
    Keywords: Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-28
    Description: Author(s): Rangana Bhattacharya, Souvik Chatterjee, and S. S. Bhattacharyya We have investigated the formation of coherent vibrational wave packets in the ground electronic state of HD + on exposure to intense ultrashort laser pulses of wavelength 1060 nm. The effects of the duration and field strength of the pulse on the final composition of the residual bound nuclear wave ... [Phys. Rev. A 85, 033424] Published Tue Mar 27, 2012
    Keywords: Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-02-05
    Description: Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe human skin disease that occurs primarily in Africa and Australia. Infection with M. ulcerans results in persistent severe necrosis without an acute inflammatory response. The presence of histopathological changes distant from the site of infection suggested that pathogenesis might be toxin mediated. A polyketide-derived macrolide designated mycolactone was isolated that causes cytopathicity and cell cycle arrest in cultured L929 murine fibroblasts. Intradermal inoculation of purified toxin into guinea pigs produced a lesion similar to that of Buruli ulcer in humans. This toxin may represent one of a family of virulence factors associated with pathology in mycobacterial diseases such as leprosy and tuberculosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉George, K M -- Chatterjee, D -- Gunawardana, G -- Welty, D -- Hayman, J -- Lee, R -- Small, P L -- New York, N.Y. -- Science. 1999 Feb 5;283(5403):854-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9933171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Toxins/chemistry/*isolation & purification/*toxicity ; Cell Cycle/drug effects ; Chromatography, High Pressure Liquid ; Chromatography, Thin Layer ; Female ; Guinea Pigs ; L Cells (Cell Line) ; Macrolides ; Mass Spectrometry ; Mice ; Mycobacterium Infections, Nontuberculous/microbiology/pathology ; Mycobacterium ulcerans/chemistry/*pathogenicity ; Necrosis ; Skin/microbiology/pathology ; Skin Diseases, Bacterial/microbiology/pathology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-05-02
    Description: Numerous post-translational modifications of histones have been described in organisms ranging from yeast to humans. Growing evidence for dynamic regulation of these modifications, position- and modification-specific protein interactions, and biochemical crosstalk between modifications has strengthened the 'histone code' hypothesis, in which histone modifications are integral to choreographing the expression of the genome. One such modification, ubiquitylation of histone H2B (uH2B) on lysine 120 (K120) in humans, and lysine 123 in yeast, has been correlated with enhanced methylation of lysine 79 (K79) of histone H3 (refs 5-8), by K79-specific methyltransferase Dot1 (KMT4). However, the specific function of uH2B in this crosstalk pathway is not understood. Here we demonstrate, using chemically ubiquitylated H2B, a direct stimulation of hDot1L-mediated intranucleosomal methylation of H3 K79. Two traceless orthogonal expressed protein ligation (EPL) reactions were used to ubiquitylate H2B site-specifically. This strategy, using a photolytic ligation auxiliary and a desulphurization reaction, should be generally applicable to the chemical ubiquitylation of other proteins. Reconstitution of our uH2B into chemically defined nucleosomes, followed by biochemical analysis, revealed that uH2B directly activates methylation of H3 K79 by hDot1L. This effect is mediated through the catalytic domain of hDot1L, most likely through allosteric mechanisms. Furthermore, asymmetric incorporation of uH2B into dinucleosomes showed that the enhancement of methylation was limited to nucleosomes bearing uH2B. This work demonstrates a direct biochemical crosstalk between two modifications on separate histone proteins within a nucleosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774535/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774535/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGinty, Robert K -- Kim, Jaehoon -- Chatterjee, Champak -- Roeder, Robert G -- Muir, Tom W -- GM07739/GM/NIGMS NIH HHS/ -- R01 GM086868/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jun 5;453(7196):812-6. doi: 10.1038/nature06906. Epub 2008 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18449190" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Catalytic Domain ; Histones/chemical synthesis/*metabolism ; Humans ; Lysine/metabolism ; Methylation ; Methyltransferases/genetics/*metabolism ; Nucleosomes/chemistry/*metabolism ; Ubiquitin/*metabolism ; Xenopus
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-09-08
    Description: MicroRNAs (miRNAs) constitute a large class of regulatory RNAs that repress target messenger RNAs to control various biological processes. Accordingly, miRNA biogenesis is highly regulated, controlled at both transcriptional and post-transcriptional levels, and overexpression and underexpression of miRNAs are linked to various human diseases, particularly cancers. As RNA concentrations are generally a function of biogenesis and turnover, active miRNA degradation might also modulate miRNA accumulation, and the plant 3'--〉5' exonuclease SDN1 has been implicated in miRNA turnover. Here we report that degradation of mature miRNAs in the nematode Caenorhabditis elegans, mediated by the 5'--〉3' exoribonuclease XRN-2, affects functional miRNA homeostasis in vivo. We recapitulate XRN-2-dependent miRNA turnover in larval lysates, where processing of precursor-miRNA (pre-miRNA) by Dicer, unannealing of the miRNA duplex and loading of the mature miRNA into the Argonaute protein of the miRNA-induced silencing complex (miRISC) are coupled processes that precede degradation of the mature miRNA. Although Argonaute:miRNA complexes are highly resistant to salt, larval lysate promotes efficient release of the miRNA, exposing it to degradation by XRN-2. Release and degradation can both be blocked by the addition of miRNA target RNA. Our results therefore suggest the presence of an additional layer of regulation of animal miRNA activity that might be important for rapid changes of miRNA expression profiles during developmental transitions and for the maintenance of steady-state concentrations of miRNAs. This pathway might represent a potential target for therapeutic intervention on miRNA expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chatterjee, Saibal -- Grosshans, Helge -- England -- Nature. 2009 Sep 24;461(7263):546-9. doi: 10.1038/nature08349. Epub 2009 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, PO Box 2543, CH-4002 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19734881" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/enzymology/*genetics/growth & development ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Exoribonucleases/deficiency/genetics/*metabolism ; Gene Expression Regulation, Developmental ; Larva/genetics ; MicroRNAs/*genetics/*metabolism ; *RNA Stability ; RNA, Helminth/genetics/metabolism ; RNA-Induced Silencing Complex/chemistry/metabolism ; Ribonuclease III/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-03-01
    Description: Calcitonin is a calcium regulating peptide hormone with binding sites in kidney and bone as well as in the central nervous system. The mechanisms of signal transduction by calcitonin receptors were studied in a pig kidney cell line where the hormone was found to regulate sodium pumps. Calcitonin receptors activated the cyclic adenosine monophosphate (cAMP) or the protein kinase C (PKC) pathways. The two transduction pathways required guanosine triphosphate (GTP)-binding proteins (G proteins) (the choleratoxin sensitive Gs and the pertussis toxin sensitive Gi, respectively) and led to opposite biological responses. Moreover, selective activation of one or the other pathway was cell cycle-dependent. Therefore, calcitonin may induce different biological responses in target cells depending on their positions in the cell cycle. Such a modulation of ligand-induced responses could be of importance in rapidly growing cell populations such as during embryogenesis, growth, and tumor formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chakraborty, M -- Chatterjee, D -- Kellokumpu, S -- Rasmussen, H -- Baron, R -- DE-04724/DE/NIDCR NIH HHS/ -- DK-19813/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 1;251(4997):1078-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale University School of Medicine, Department of Cell Biology, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1847755" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/physiology ; Animals ; Calcitonin/*physiology ; *Cell Cycle ; Cell Line ; GTP-Binding Proteins/*physiology ; Kidney ; Ouabain/metabolism ; Receptors, Calcitonin ; Receptors, Cell Surface/*physiology ; Signal Transduction ; Sodium-Potassium-Exchanging ATPase/*metabolism ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-23
    Description: Science and the National Science Foundation announce the winners and honorable mentions in the categories of photography, illustration, informational graphics, noninteractive multimedia, and interactive multimedia in this year's Science and Engineering Visualization Challenge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chatterjee, Rhitu -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1730-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990531" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Audiovisual Aids ; *Awards and Prizes ; Computer Graphics ; *Diagnostic Imaging ; Humans ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Multimedia ; Photography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-19
    Description: Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of 〉4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration 〈 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473092/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473092/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, Stephan -- Plouffe, David M -- Kuhen, Kelli L -- Bonamy, Ghislain M C -- Wu, Tao -- Barnes, S Whitney -- Bopp, Selina E -- Borboa, Rachel -- Bright, A Taylor -- Che, Jianwei -- Cohen, Steve -- Dharia, Neekesh V -- Gagaring, Kerstin -- Gettayacamin, Montip -- Gordon, Perry -- Groessl, Todd -- Kato, Nobutaka -- Lee, Marcus C S -- McNamara, Case W -- Fidock, David A -- Nagle, Advait -- Nam, Tae-gyu -- Richmond, Wendy -- Roland, Jason -- Rottmann, Matthias -- Zhou, Bin -- Froissard, Patrick -- Glynne, Richard J -- Mazier, Dominique -- Sattabongkot, Jetsumon -- Schultz, Peter G -- Tuntland, Tove -- Walker, John R -- Zhou, Yingyao -- Chatterjee, Arnab -- Diagana, Thierry T -- Winzeler, Elizabeth A -- R01 AI079709/AI/NIAID NIH HHS/ -- R01 AI079709-04/AI/NIAID NIH HHS/ -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI090141-02/AI/NIAID NIH HHS/ -- R01AI090141/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1372-7. doi: 10.1126/science.1211936. Epub 2011 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Cell Line, Tumor ; *Drug Discovery ; Drug Evaluation, Preclinical ; Drug Resistance ; Erythrocytes/parasitology ; Humans ; Imidazoles/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Liver/*parasitology ; Malaria/*drug therapy/parasitology/prevention & control ; Mice ; Mice, Inbred BALB C ; Molecular Structure ; Piperazines/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Plasmodium/cytology/*drug effects/growth & development/physiology ; Plasmodium berghei/cytology/drug effects/growth & development/physiology ; Plasmodium falciparum/cytology/drug effects/growth & development/physiology ; Plasmodium yoelii/cytology/drug effects/growth & development/physiology ; Polymorphism, Single Nucleotide ; Protozoan Proteins/chemistry/genetics/metabolism ; Random Allocation ; Small Molecule Libraries ; Sporozoites/drug effects/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...