ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 40 (1991), S. 829-846 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ab initio averaged relativistic effective core potentials (AREP), spin-orbit (SO) operators, and valence basis sets are reported for the elements Fr through Pu in the form of expansions in Gaussian-type functions. Gaussian basis sets with expansion coefficients for the low-energy states of each atom are given. Atomic orbital energies calculated under the j-j coupling scheme within the self-consistent field approximation and employing the AREP'S in their unaveraged form (REP'S) agree to within 10% of orbital energies due to numerical all-electron Dirac-Fock calculations. The accuracy of the AREP'S and so operators is also shown to be good through comparisons of calculated so splitting energies with all-electron Dirac-Fock results.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 55 (1995), S. 393-410 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ab initio self-consistent-field calculations are reported for electronic states of beryllium clusters comprised of 93, 105, 111, and 123 atoms. The respective clusters correspond to coordination shells 12-15 of a central Be atom with internuclear separations derived from the lattice constants of the bulk metal. Ab initio effective core potentials have been employed to replace the 1 s electrons, thereby reducing the complexity of the calculations. In addition, use of the full D3h point group symmetry of the clusters results in a substantial reduction of the numbers of two-electron integrals that must be computed and processed. Binding energies, orbital energies, electric field gradient, nuclear-electrostatic potential, diamagnetic shielding constant, second moments, and Mulliken populations are calculated for selected electronic states. Calculated binding energies when compared among the different clusters as well as to smaller and larger fragments from earlier studies provide evidence for the onset of convergence to the Hartree-Fock limit of the bulk. Lowest-state ionization potentials are consistently above and agree to within 14% of the experimental workfunction. The net charge on the central beryllium atom decreases toward zero. The variability of observed bulklike behavior for the different properties indicates that the transition between cluster and bulklike behavior is not sharp and depends on the quantity of interest. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 41 (1992), S. 733-747 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Hartree-Fock-Roothaan studies are reported for low-lying electronic states of metallic beryllium as modeled by a moiety of 135 beryllium atoms. The system corresponds to 16 coordination shells of a central Be with internuclear separations derived from the lattice constants of the bulk metal. The calculations become tractable by use of the full D3h symmetry of the system at both the integrals and self-consistent-field stages and by employing ab initio effective potentials for the 1s electrons of each beryllium atom. Ionization potentials, binding energies, orbital energies, electric field gradients, nuclear-electrostatic potentials, diamagnetic shielding constants, second moments, and Mulliken populations are calculated for selected electronic states. The calculated ionization potential for the lowest state agrees to within 10% of the experimental bulk work function. A density-of-states analysis for that state is reported and compared with band structure calculations.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 38 (1990), S. 225-240 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ab initio self-consistent field calculations are reported for electronic states of beryllium clusters comprised of 81 and 87 atoms. The clusters correspond to the tenth and eleventh coordination shells of a central Be with internuclear separations derived from the lattice constants of the bulk metal. Ab initio effective core potentials have been employed to replace the 1s electrons, therey reducing the complexity of the calculations. In addition, the use of the full D3h point group symmetry of the clusters results in a substantial reduction of the number of two-electron integrals that must be computed and processed. Binding energies, orbital energies, electric field gradient, nuclear-electrostatic potential, diamagnetic shielding constant, second moments, and Mulliken populations are calculated for selected electronic states. Systematic trends toward bulk behavior with increasing cluster size, as found in earlier cluster studies, continue to appear for the electric field gradient and quadrupole moment of Be81. Anomalous behavior, however, is observed in Be87. This is attributed to distortional effects due to the addition of atoms in planes above and below the Be81 cluster along the principal axis of symmetry.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...