ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atomic, Molecular and Optical Physics  (1)
  • Microtubules/*physiology  (1)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-11-05
    Description: Forces generated by protein polymerization are important for various forms of cellular motility. Assembling microtubules, for instance, are believed to exert pushing forces on chromosomes during mitosis. The force that a single microtubule can generate was measured by attaching microtubules to a substrate at one end and causing them to push against a microfabricated rigid barrier at the other end. The subsequent buckling of the microtubules was analyzed to determine both the force on each microtubule end and the growth velocity. The growth velocity decreased from 1.2 micrometers per minute at zero force to 0.2 micrometer per minute at forces of 3 to 4 piconewtons. The force-velocity relation fits well to a decaying exponential, in agreement with theoretical models, but the rate of decay is faster than predicted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dogterom, M -- Yurke, B -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):856-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Biopolymers ; Cattle ; In Vitro Techniques ; Microtubules/*physiology ; Tubulin/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Particle-hole and pairing relationships are obtained within the framework of the unitary group formulation of the many-electron problem using the concept of particle-hole conjugation. Besides the familiar relationships for alternant hydrocarbons, relationships among various pericyclic reaction paths are obtained.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...