ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: XMM-Newton observed SAX J2103.5+4545 on January 6, 2003, while RXTE was monitoring the source. Using RXTE-PCA dataset between December 3, 2002 and January 29, 2003, the spin period and average spin-up rate during the XMM-Newton observations were found to be 354.7940+/-0.0008 s and (7.4 +/- 0.9) x 10(exp -13) Hz/s respectively. In the power spectrum of the 0.9-11 keV EPIC-PN lightcurve, we found quasi periodic oscillations around 0.044 Hz (22.7 s) with an rms fractional amplitude approx. 6.6 %. We interpreted this QPO feature as the Keplerian motion of inhomogeneities through the inner disk. In the X-ray spectrum, in addition to the power law component with high energy cutoff and approx. 6.4 keV fluorescent iron emission line, we discovered a soft component consistent with a blackbody emission with kT approx. 1.9 keV. The pulse phase spectroscopy of the source revealed that the blackbody flux peaked at the peak of the pulse with an emission radius approx. 0.3 km, suggesting the polar cap on the neutron star approx. 6.42 keV was shown to peak at the off-pulse phase, supporting the idea that this feature arises from fluorescent emission of the circumstellar material around the neutron star rather than the hot region in the vicinity of the neutron star polar cap.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50746 , Publications of the Astronomical Society of the Pacific (ISSN 0004-6280) (e-ISSN 1538-3873); 129; 982; 124401
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-05
    Description: No abstract available
    Keywords: Astrophysics
    Type: JPL-CL-16-0896 , Hubble Fellow Symposium; Mar 14, 2016 - Mar 16, 2016; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-23
    Description: CMB-S4 is envisioned to be the ultimate ground-based cosmic microwave background experiment, crossing critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. The CMB-S4 science case is spectacular: the search for primordial gravitational waves as predicted from inflation and the imprint of relic particles including neutrinos, unique insights into dark energy and tests of gravity on large scales, elucidating the role of baryonic feedback on galaxy formation and evolution, opening up a window on the transient Universe at millimeter wavelengths, and even the exploration of the outer Solar System. The CMB-S4 sensitivity to primordial gravitational waves will probe physics at the highest energy scales and cross a major theoretically motivated threshold in constraints on inflation. The CMB-S4 search for new light relic particles will shed light on the early Universe 10,000 times farther back than current experiments can reach. Finally, the CMB-S4 Legacy Survey covering 70% of the sky with unprecedented sensitivity and angular resolution from centimeter- to millimeter-wave observing bands will have a profound and lasting impact on Astronomy and Astrophysics and provide a powerful complement to surveys at other wavelengths, such as LSST and WFIRST, and others yet to be imagined. We emphasize that these critical thresholds cannot be reached without the level of community and agency investment and commitment required by CMB-S4. In particular, the CMB-S4 science goals are out of the reach of any projected precursor experiment by a significant margin.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74204 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: With support from this grant, we have: 1) Developed techniques for improving wavelengths and f-values for singly and doubly charged ions of the iron group and have improved the accuracy of Fe III wavelengths by an order of magnitude. New Fe II f-values have also resulted from this work. 2) Measured line oscillator strengths and photoabsorption cross sections for UV molecular spectral feature that have been, or could be, used for searches for and detection of molecules in diffuse and translucent interstellar clouds and for determination of molecular column densities there. In addition, we have determined other molecular parameters -- line assignments, wavelengths, and line widths -- that are essential for theoretical descriptions of the abundance, fractionation, and excitation of interstellar molecules and for comparison of predictions with observations. 3) Measured A-values for spin-changing and other weak lines in low-Z ions. When A-values are available, these spectral features are useful for astrophysical plasma density and temperature diagnostics. Such lines are also used in interstellar abundance determinations in cases where the stronger allowed lines are saturated in astronomical spectra. 4) Taken an activist approach to ensuring that, (i), astronomers have ready access to our data, and, (ii), avenues of communication between data users and producers are strengthened.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: We report high-resolution laboratory measurements of photoabsorption cross sections of CO, N2, and SO2 in the wavelength range 80 to 320 nm. The motivation is to provide the quantitative data that are needed to analyze observations of absorption by, and to model photochemical processes in, the interstellar medium and a number of planetary atmospheres. Because of the high resolution of the spectrometers used, we can minimize distortion of the spectrum that occurs when instrument widths are greater than the widths of spectral features being measured. In many cases, we can determine oscillator strengths of individual rotational lines - a unique feature of our work.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 158-161; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN17478 , GSFC-E-DAA-TN16515 , The Astrophysical Journal; 789; 1; 58
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multiwavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN32940 , The Astrophysical Journal (e-ISSN 2041-8213); 808; 2; 149
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar systems Edgeworth Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both approx. 2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10-14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F disk /F star optical brightness approx. t( exp.-0.8), similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41178 , The Astronomical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 152; 3; 64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...