ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Quenched Carbonaceous Composites (QCC's) are products from the ejecta of a hydrocarbon plasma. Two types of QCC, dark QCC and thermally-altered (heated) filmy QCC, have been shown to have a 220 nm absorption feature similar to that seen in the interstellar extinction curve. We present here Raman spectra of the QCCs and compare them with various carbonaceous materials to better understand the structure QCC. We find that structure of QCC is different from that of graphite and more similar to carbonaceous material found in some interplanetary dust particles and chondritic meteorites.
    Keywords: Astrophysics
    Type: From Stardust to Planetesimals: Contributed Papers; 227-230; NASA-CP-3343
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: We report an orbital characterization of GJ1108Aab that is a low-mass binary system in the pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of e = 0.63 is obtained, which might be induced by the KozaiLidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we conrm that the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (M(sub dynamical,GJ1108Aa) = 0.72 0.04 Solar Mass and M(sub dynamical,GJ1108Ab) = 0.30 0.03 Solar Mass) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider that the discrepancy in mass comparison can be attributed to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in the evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any signicant offsets.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64800 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 865; 2; 152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present high-resolution H-band polarized intensity (FWHM=0".1:14AU) and L'-band imaging data(FWHM= 0".11:15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0".2) up to 210 AU (1".5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is approx.70 AU. Our data show that the geometric center of the disk shifts by approx.6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of spectral energy distribution fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit of approx.30 to approx.50 M(sub J) on the mass of companions within the gap. Taking into account the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap. Key words: planetary systems - polarization - protoplanetary disks - stars: individual (PDS 70) - stars: pre-main sequence.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN7121 , Astrophysical Journal Letters; 758; L19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 plus or minus 2 AU (1."058 plus or minus 0."007) from the B9-type star K And. The planet was detected with Subaru/HiCIAO (Subaru/High Contrast Instrument for the Subaru Next Generation Adaptive Optics) during the SEEDS (Strategic Exploration of Exoplanets and Disks with Subaru Telescope/HiCIAO) survey and confirmed as a bound companion via common proper motion measurements. Observed near-infrared magnitudes of J equals 16.3 plus or minus 0.3, H equals 15.2 plus or minus 0.2, K (sub s) = 14.6 plus or minus 0.4, and L prime equals 13.12 plus or minus 0.09 indicate a temperature of approximately 1700 degrees Kelvin. The galactic kinematics of the host star are consistent with membership in the Columba Association, implying a corresponding age of 30 (exp from plus 20 to minus10) Myr. The systems age, combined with the companion photometry, points to a model-dependent companion mass approximately 12.8 times the mass of Jupiter. The host stars estimated mass of 2.4 to 2.5 times the mass of the sun places it among the most massive stars ever known to harbor an extrasolar planet or low-mass brown dwarf. While the mass of the companion is close to the deuterium burning limit, its mass ratio, orbital separation, and likely planet-like formation scenario imply that it may be best defined as a super-Jupiter with properties similar to other recently discovered companions to massive stars.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN7687 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 763; 2; L32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN32900 , The Astrophysical Journal (e-ISSN 2041-8213); 799; 1; 43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We present results from the first three years of observations of moving group (MG) targets in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of (is) approximately10(exp 5) at 1" and (is) approximately 10(exp 6) beyond 2" around 63 proposed members of nearby kinematic MGs. We review each of the kinematic associations to which our targets belong, concluding that five, beta Pictoris ((is) approximately 20 Myr), AB Doradus ((is) approximately 100 Myr), Columba ((is) approximately 30 Myr), Tucana-Horogium ((is) approximately 30 Myr), and TW Hydrae ((is) approximately 10 Myr), are sufficiently well-defined to constrain the ages of individual targets. Somewhat less than half of our targets are high-probability members of one of these MGs. For all of our targets, we combine proposed MG membership with other age indicators where available, including Ca ii HK emission, X-ray activity, and rotation period, to produce a posterior probability distribution of age. SEEDS observations discovered a substellar companion to one of our targets, kappa And, a late B star. We do not detect any other substellar companions, but do find seven new close binary systems, of which one still needs to be confirmed. A detailed analysis of the statistics of this sample, and of the companion mass constraints given our age probability distributions and exoplanet cooling models, will be presented in a forthcoming paper.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN21522 , Astrophysical Journal; 786; 1; 1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at 〉 or = 5(sigma) levels from approx. 0.45" to approx.1.7" (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of approx. 0.75" (NE side) and approx. 0.65" (SW side). Global forward-modeling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from approx. 0.25-1.6", although the central region is quite noisy and high S/N are only found in the range approx. 0.75-1.2". The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from approx. 10% at 0.55" to approx. 25% at 1.6". The maximum is found at scattering angles of 90, either from the main components of the disk or from dust grains blown out to larger radii.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41486 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 593; A73; 1-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...