ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Asteroid 951 Gaspra appears to be in an obliquity resonance with its spin increasing due to the YORP effect. Gaspra, an asteroid 5.8 km in radius, is a prograde rotator with a rotation period of 7.03 hours. A three million year integration indicates its orbit is stable over at least this time span. From its known shape and spin axis orientation and assuming a uniform density, Gaspra's axial precession period turns out to be nearly commensurate with its orbital precession period, which leads to a resonance condition with consequent huge variations in its obliquity. At the same time its shape is such that the Yarkovsky-O'Keefe-Radzievskii-Paddack effect (YORP effect for short) is increasing its spin rate. The YORP cycle normally leads from spin-up to spin-down and then repeating the cycle; however, it appears possible that resonance trapping can at least temporarily interrupt the YORP cycle, causing spin-up until the resonance is exited. This behavior may partially explain why there is an excess of fast rotators among small asteroids. YORP may also be a reason for small asteroids entering resonances in the first place.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: We have investigated the impact of geocenter motion on Jason-2 orbits. This was accomplished by computing a series of Jason-1, Jason-2 GPS-based and SLR/DORIS-based orbits using ITRF2008 and the IGS repro1 framework based on the most recent GSFC standards. From these orbits, we extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. The fitted annual and seasonal terms of these time-series are compared to two different geocenter motion models. Subsequently, we included the geocenter motion corrections in the POD process as a degree-1 loading displacement correction to the tracking network. The analysis suggested that the GSFC's Jason-2 std0905 GPS-based orbits are closely tied to the center of mass (CM) of the Earth whereas the SLR/DORIS std0905 orbits are tied to the center of figure (CF) of the ITRF2005 (Melachroinos et al., 2012). In this study we extend the investigation to the centering of the GPS constellation and the way those are tied in the Jason-1 and Jason-2 POD process. With a new set of standards, we quantify the GPS and SLR/DORIS-based orbit centering during the Jason-1 and Jason-2 inter-calibration period and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the full term of the geocenter motion correction.
    Keywords: Astrophysics
    Type: GSFC.ABS.6915.2012 , Ocean Surface Topography Science Team Meeting; Sep 27, 2012 - Sep 28, 2012; Venice; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...