ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The locations of the termination shock and the heliopause are studied taking into account the effects of pickup protons. The study uses available plasma and magnetic field data from Voyagers over a 14-year period (1978-1991) and Voyager observation of the 1992-93 radio emission event. Outside 30 AU, pickup protons have a significant influence on dynamical structures of the outer heliosphere. The solar wind is treated as a mixture of electrons, solar wind protons, and interstellar pickup protons. If the magnitude of the interstellar magnetic field B(sub int) is given, one can quantitatively study the motion and location of the termination shock. The location is anti-correlated with the sun spot number and the shock has an average speed of approx. 24 km/s. Because B(sub int) is poorly known, additional information is needed in studying the termination shock. Cummings, et al. have used observations of anomalous cosmic rays to estimate the location of the shock. The observations of the 1991 GMIR and GMIR shock and the 1992-93 radio emission event provide another handle for the study of the termination shock and the heliopause. After its penetration through the termination shock, the GMIR shock continued to propagate in the subsonic region of the solar wind and eventually interacted with the heliopause. This interaction produces a transmitted shock propagating outward in the interstellar medium and a reflected shock propagating inward toward the sun in the subsonic solar wind. The plasma frequencies behind the reflected and the transmitted shock can be, respectively, responsible for the 2- and 3-kHz radio emissions. Taking into account the effects of pickup protons we found that the average locations of the termination shock and the heliopause in 1991-92 are at approximately 66 AU and 150 AU, respectively.
    Keywords: Astrophysics
    Type: International Solar Wind 8 Conference; 108; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: The intensely and non-uniformly magnetized crustal sources generate an effective large-scale magnetic field. In the Southern hemisphere the strongest crustal fields lead to the formation of large-scale mini-magnetospheres. In the Northern hemisphere, the crustal fields are rather weak and there are only isolated mini-magnetospheres. Re-connection with the interplanetary magnetic field (IMF) occurs in many localized regions. This may occur not only in cusp-like structures above nearly vertical field anomalies but also in halos extending several hundreds of kilometers from these sources. Re-connection will permit solar wind (SW) and more energetic particles to precipitate into and heat the neutral atmosphere. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment are concentrated in the near polar regions. The effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak has been derived for each of the profiles studied. The effective scale-heights have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A significant difference between the large-scale mini-magnetospheres and regions outside of them has been found. The neutral atmosphere is cooler inside the large-scale mini-magnetospheres. It appears that outside of the cusps the strong crustal magnetic fields prevent additional heating of the neutral atmosphere by direct interaction of the SW. The scale-height of the neutral atmosphere density derived from the experiment with the MGS Accelerometer has been compared with MAG/ER data. The scale-height was found to be usually larger than mean value near the boundaries of potential mini-magnetospheres and around cusps . It may indicate that the paleo-magnetic/IMF field re-connection is characteristic of the mini-magnetospheres at Mars.
    Keywords: Astrophysics
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The major features of the profile of 〉70 MeV/nuc cosmic ray intensity (CRI) observed by Voyager 1 (V1) in the heliosheath from 2005.8 - 2010.24 are described by the empirical "CR-B" relation as the cumulative effect of variations of the magnetic field strength B. The CRI profile observed by Voyager 2 (V2) from 2008.60 to 2010.28 in the heliosheath is also described by the CR-B relation. On a smaller scale, of the order of a hundred days, a sequence of 3 CRI decreases observed by V1 during 2006 was interpreted as the effect of a propagating interplanetary shock first interacting with the termination shock, then moving past V1, and finally reflecting from the heliopause and propagating back to V1. Our observations show that the second CRI decrease in this sequence began during the passage of a "Global Merged Interaction Region" (GMIR), approx. 40 days after the arrival of the GMIR and its possible shock. The first and third CRI decreases in the sequence were associated with local enhancements of B. The magnetic field observations associated with the second sequence of 3 cosmic ray intensity decreases observed by V1 in 2007/2008 are more difficult to reconcile with the scenario of Webber et al. and the CR-B relation. The discrepancy might indicate the importance of latitudinal effects.
    Keywords: Astrophysics
    Type: GSFC.JA.00182.2012 , Journal of Geophysical Research: Space Physics; 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper describes observations of daily averages of the magnetic field strength B and the magnetic polarity measured by Voyager 1 (V1) in the heliosheath during 2009 between 108.5 and 112.1 AU and at heliographic latitude 34. . 4. A negative magnetic polarity sector was observed during 2009 DOY 43.255. A positive polarity sector was observed during 2009 DOY 256.365. We offer the hypothesis that the existence of the two sectors is the result of the displacement of the wavy heliospheric current sheet to the position of V1 as a result of northward flow in the heliosheath. The large size of the sectors is caused by the slow radial motion of the flow observed by V1 in the heliosheath. The distribution of B during 2009 was lognormal, in contrast to the Gaussian distributions observed by V1 in the heliosheath prior to 2009. The large-scale fluctuations of B, described by the distribution of increments of daily averages of B, have a Tsallis distribution with q = 1.6. The large-scale fluctuations of B observed by V1 during 2009 have a multifractal spectrum with the same parameters that V1 observed during 2005 close to the termination shock at 94 AU. These results suggest that the large-scale magnetic fluctuations of B are in a metastable equilibrium state in the heliosheath between 94 AU and 112.1 AU.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 725; 1; 1306-1316
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: This paper describes the multi-scale structure of the compressible "turbulence" observed by Voyager 2 in the heliosheath behind the termination shock from 2007 DOY 245.0-300.8 and in a unipolar region from 2008 DOY 2.9-75.6. The magnetic field strength is highly variable on scales from 48 s to several hours in both intervals. The amplitudes of the fluctuations were greater in the post-TS region than in the unipolar region. The multiscale structure of the increments of B is described by the q-Gaussian distribution of nonextensive statistical mechanics on all scales from 48 s to 3.4 hr in the unipolar region and 6.8 hr in the post-TS region, respectively. The amplitudes of the fluctuations of increments of B are larger in the post-TS region than in the unipolar region at all scales. Time series of the magnitude and direction of B show that the fluctuations are highly compressive. The small-scale fluctuations are a mixture of coherent structures (semi-deterministic structures) and random structures, which vary significantly from day to day
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...