ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (16)
  • 1
    Publication Date: 2013-08-29
    Description: We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (〈 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external check on the UV estimates of the star formation rates, and on the use of X-ray luminosities to infer these rates in rapidly starforming galaxies at high redshift.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using ROSAT Position Sensitive Proportional Counter (PSPC) pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV/(s*sq cm*sr*keV) in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral stape of the WHIM emission can be described as thermal emission with logT = 6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV 〈 E 〈 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is approx. 〈 0.002 for 10 min 〈 0 〈 20 min in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of approx. 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV/(s*sq cm*sr*keV) to be consistent with the ROSAT All-Sky Survey.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Using XMM-Newton spatially resolved X-ray imaging spectroscopy we obtain the temperature, density, entropy, gas mass, and total mass profiles for two groups of galaxies out to approximately 0.3 R(sub vir)(R(sub vir), the virial radius). Our density profiles agree well with those derived previously, and the temperature data are broadly consistent with previous results but are considerably more precise. Both of these groups are at the mass scale of 2x10(exp 13) M(solar mass), but have rather different properties. Both have considerably lower gas mass fractions at r 〈 0.3 R(sub vir), than the rich clusters. NGC2563, one of the least luminous groups for its X-ray temperature, has a very low gas mass fraction of approximately 0.004 inside 0.1 R(sub vir), which increases with radius. NGC4325, one of the most luminous groups at the same average temperature, has a higher gas mass fraction of 0.02. The entropy profiles and the absolute values of the entropy as a function of virial radius also differ, with NGC4325 having a value of approximately 100 keV cm(exp -2) and NGC2563 a value of approximately 300 keV cm(exp -2) at r approximately 0.1 R(sub vir). For both groups the profiles rise monotonically with radius and there is no sign of an entropy 'floor'. These results are inconsistent with pre-heating scenarios that have been developed to explain a possible entropy floor in groups, but are broadly consistent with models of structure formation that include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process that controls the transformation of gas into stars and thus the formation of structure in the universe.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: We discuss the possibility of constraining cosmological parameters using the Sunyaev-Zel'dovich (SZ) effect and thermal bremsstrahlung caused by intra-cluster gas in clusters of galaxies. The new generation of X-ray satellites and ground based interferometers dedicated to SZ observations will enable one to reduce uncertainties in these measurements, and thus make this method potentially quite promising in the near future. The importance of this method is that, unlike most other methods, it is based on physical principles, no 'standard candles' or 'rulers' needed. We estimate the accuracy achievable in the determination of the matter density, OMEGA(sub m), the cosmological constant, OMEGA(sub LAMBDA), and the Hubble constant, h, using the redshift dependence of the angular diameter distance derived from observations in the near future. We demonstrate that constraints from the angular diameter distance are orthogonal to those from Cosmic Microwave Background (CMB) fluctuations in the parameter space defined by OMEGA(sub m), OMEGA(sub LAMBDA), and h. Assuming a statistical error of five percent in the angular diameter distance for each cluster in a sample of five hundred clusters, we show that the redshift dependence of the angular diameter distance combined with constraints from CMB fluctuations can put stringent constraints on OMEGA(sub m) (+/- 0.03), OMEGA(sub LAMBDA) (+/- 0.03) and h (+/- 0.03, 3(sigma) errors). We also show that, with as few as 50 clusters between redshifts 0.01 and 1.5 with an assumed 10% statistical error in the angular diameter distance determination, one can distinguish between models with zero cosmological constant and spatially flat models with a cosmological constant with high confidence level (independently from the supernova results) and put meaningful constraints on OMEGA(sub m) (+/- 0.01), OMEGA(sub LAMBDA) (+/- 0.01) and h (+/- 0.01, 3(sigma) errors). With the expected advances in observational technology, we will be limited by systematic errors. We discuss the sources of systematic errors and how they can be reduced.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.
    Keywords: Astrophysics
    Type: GSFC.JA.6101.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: We present the average abundances of the intermediate elements obtained by performing a stacked analysis of all the galaxy clusters in the archive of the X-ray telescope AKA. We determine the abundances of Fe, Si, S, and Ni as a function of cluster temperature (mass) from 1 - 10 keV, and place strong upper limits on the abundances of Ca and Ar. In general, Si and Ni are overabundant with respect to Fe, while Ar and Ca are very underabundant. The discrepancy between the abundances of Si, S , Ar, and Ca indicate that the alpha-elements do not behave homogeneously as a single group. We show that the abundances of the most well-determined elements Fe, Si, and S in conjunction with recent theoretical supernovae yields do not give a consistent solution for the fraction of material produced by Type Ia and Type II supernovae at any temperature or mass. The general trend is for higher temperature clusters to have more of their metals produced in Type II supernovae than in Type Ias. The inconsistency of our results with abundances in the Milky Way indicate that spiral galaxies are not the dominant metal contributors to the intracluster medium (ICM). The pattern of elemental abundances requires an additional source of metals beyond standard SNIa and SNII enrichment. The properties of this new source are well matched to those of Type II supernovae with very massive, metal-poor progenitor stars. These results are consistent with a significant fraction of the ICM metals produced by an early generation of population III stars.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to 〉 (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies 〉 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.
    Keywords: Astrophysics
    Type: GSFC.JA.7096.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining medium for the ENLR clouds.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We present a spectral analysis of a approx 30 day, near-continuous observation of the Seyfert 1 galaxy NGC 7469 with RXTE. Daily integrations show strong spectral changes during the observation. Our main result is that we find the X-ray spectral index to be correlated with the UV flux. Furthermore, the broadband X-ray photon flux is also correlated with the UV continuum. These correlations point toward a model in which the X-rays originate via thermal Comptonization of UV seed photons. Furthermore, the UV is also correlated with the extrapolation of the X-ray power law into the soft X-ray/EUV region. Our data analysis therefore reopens the possibility that the UV photons and their variability arise from reprocessing, as long as the primary source of heating is photoelectric absorption in the re-processor, rather than Compton down-scattering. A coherent picture of the X-ray/UV variability can therefore be constructed whereby absorption and reprocessing of EUV/soft X-rays in a standard accretion disk produce a variable seed photon distribution, which is in turn up-scattered into the X-ray band. We also find a significant correlation between the 2-10 keV flux and the 6.4 keV iron K-alpha line, suggesting that at least some portion of the line originates within approx. 1 light day of the X-ray continuum source. Neither the power-law photon index nor the Compton reflection component are correlated with the 2-10 keV flux. The latter is not correlated with the iron K-alpha line flux either. We do find an apparent correlation between the X-ray spectral index and the strength of the Compton reflection component. In an Appendix we show, however, that this can be produced by a combination of statistical and systematic errors. We conclude that the apparent variations in the Compton reflection component may be an artifact of these effects.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 544; 734-746
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: We present the first results of a wide solid angle, moderately deep Chandra survey of the Lockman Hole North West Region. Our 9 ACIS-I fields cover an effective solid angle of 0.33 sq deg and reach a depth of 3 x 10(exp -16) erg/sq cm/s in the 0.4-2 keV band, and 3 x 10(exp -15) erg/sq cm/s in the 2-8 keV band. The best fit logN-logS for the entire field, the largest contiguous Chandra field yet observed, matches well onto that of the Chandra Deep Field North. This indicates that over 90% of the 2-8 keV X-ray background is resolved into point sources. We show that the full range of the 'cosmic variance' previously seen in different Chandra fields can be reproduced in a small region of the sky. The count-in-cells analysis shows that the 2-10 keV band sources have much larger angular correlation scale than that of the 0.4-2 keV band. We found the large difference is likely to be caused by a stronger spatial correlation in the hard band sources rather than the redshift effect.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...