ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to l0(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross- diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: [I] Kilometric continuum (KC) radiation was first identified from Geotail plasma wave observations. Past authors have shown that this emission has a frequency range that overlaps that of the auroral kilometric radiation (AKR) but is characterized by a fine structure of narrow-bandwidth, linear features that have nearly constant or drifting frequency. This fine structure is distinct from that of AKR. KC also apparently has a distinct source region probably associated with the low-latitude inner magnetosphere, consistent with direction-finding and ray-tracing results. We present new high-resolution electric and magnetic field observations of KC obtained by the Polar plasma wave instrument in the near-source region. These observations show intense electrostatic and less intense electromagnetic emissions near the magnetic equator at the plasmapause. Simultaneously, Geotail, located at 20 to 30 RE in radial distance, observes KC in the same frequency range. These data support a possible mode-conversion source mechanism near a region of high-density gradient. High-resolution data obtained from wideband receivers on board both Polar and Cluster show closely spaced bands of emission near the magnetic equator that may be due to many nearby independent sources of EM emission perhaps associated with density fluctuations or cavities in the plasmasphere.
    Keywords: Astrophysics
    Type: Paper-2003JA009826 , Journal of Geophysical Research (ISSN 0148-0227); 108; A11; 4-1 - 4-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io-L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.
    Keywords: Astrophysics
    Type: Paper-1998GL900193 , Geophysical Research Letters (ISSN 0094-8276); 25; 24; 4425-4428
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-28
    Description: Auroral hiss emissions are ubiquitous in planetary magnetospheres, particularly in regions where electric current systems are present. They are generally diagnostic of electrodynamic coupling between conductive bodies, thus making auroral and moon-connected magnetic field lines prime locations for their detection. However, the role of Saturn's rings as a dynamic conductive body has been elusive and of great interest to the community. Cassini's Grand Finale orbits afforded a unique opportunity to directly sample magnetic field lines connected to the main rings. Here we provide strong evidence for the persistent and organized presence of auroral hiss demonstrably associated with the main rings. This is in contrast to recent observations suggesting that Saturn's rings may be barriers to field-aligned currents. Our results provide a new view of Saturn's rings as a dynamic system that is in continuous and ordered electrodynamic coupling with the planet.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN73239 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 46; 13; 7166-7172
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...