ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The goals of this research were to determine the physical conditions of the Photon-Dominated Regions (PDRS) surrounding the cooler stars (B0-A0) of several reflection nebulae and to test theoretical "low-density" PDR models. In contrast to the substantial investigation on "high-density" PDRS, " low-density" PDRs have been adequately modelled, but have not been adequately tested. At the start of this project, we had reduced Kuiper Airborne Observatory spectra of several far-infrared (FIR) fine structure lines on eight reflection nebulae that cover a range in cooler stellar spectral types (A0-B0). We analyzed these data in the context of "los-density" PDR models asking the question: Do the physical conditions in these reflection nebulae change with stellar spectral type as predicted?
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present an overview or the HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) in the Magellanic Clouds project, which is a Herschel Space Observatory open time key program. We mapped the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) at 100, 160, 250, 350, and 500 micron with the Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS) instruments on board Herschel using the SPIRE/PACS parallel mode. The overriding science goal of HERITAGE is to study the life cycle of matter as traced by dust in the LMC and SMC. The far-infrared and submillimeter emission is an effective tracer of the interstellar medium (ISM) dust, the most deeply embedded young stellar objects (YSOs), and the dust ejected by the most massive stars. We describe in detail the data processing, particularly for the PACS data, which required some custom steps because of the large angular extent of a single observational unit and overall the large amount of data to be processed as an ensemble. We report total global fluxes for LMC and SMC and demonstrate their agreement with measurements by prior missions. The HERITAGE maps of the LMC and SMC are dominated by the ISM dust emission and bear most resemblance to the tracers of ISM gas rather than the stellar content of the galaxies. We describe the point source extraction processing and the critetia used to establish a catalog for each waveband for the HERITAGE program. The 250 micron band is the most sensitive and the source catalogs for this band have approx. 25,000 objects for the LMC and approx. 5500 objects for the SMC. These data enable studies of ISM dust properties, submillimeter excess dust emission, dust-to-gas ratio, Class 0 YSO candidates, dusty massive evolved stars, supemova remnants (including SN1987A), H II regions, and dust evolution in the LMC and SMC. All images and catalogs are delivered to the Herschel Science Center as part of the conummity support aspects of the project. These HERITAGE images and catalogs provide an excellent basis for future research and follow up with other facilities.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN19482 , The Astrophysical Journal; 146; 3; 62
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We report the first extragalactic detection of the complex organic molecules (COMs) dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO) with the Atacama Large Millimeter/submillimeter Array (ALMA). These COMs, together with their parent species methanol (CH3OH), were detected toward two 1.3 mm continuum sources in the N 113 star-forming region in the low-metallicity Large Magellanic Cloud (LMC). Rotational temperatures (Trot approx. 130 K) and total column densities (Nrot 10 approx. 16 cm2) have been calculated for each source based on multiple transitions of CH3OH. We present the ALMA molecular emission maps for COMs and measured abundances for all detected species. The physical and chemical properties of two sources with COMs detection, and the association with H2O and OH maser emission, indicate that they are hot cores. The fractional abundances of COMs scaled by a factor of 2.5 to account for the lower metallicity in the LMC are comparable to those found at the lower end of the range in Galactic hot cores. Our results have important implications for studies of organic chemistry at higher redshift.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66669 , GSFC-E-DAA-TN54004 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 853; 2; L19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The dust properties in the Large and Small Magellanic Clouds are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 micromillimeters. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a powerlaw emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models we investigate the origin of the submillimeter excess; defined as the submillimeter (submm) emission above that expected from SMBB models fit to observations 〈 200 micromillimeters. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 micromillimeters submillimeter excesses of 27% and 43% for the Large and Small Magellanic Clouds, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 plus or minus 1.7) x 10 (sup 5) and (8.3 plus or minus 2.1) x 10 (sup 4) solar masses for the Large and Small Magellanic Clouds, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN19477
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The nature, composition, abundance, and size distribution of dust in galaxies is determined by the rate at which it is created in the different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetime and destruction efficiencies of silicate and carbon dust in these galaxies. We find dust lifetimes of 22+/-13 Myr (30+/-17 Myr) for silicate (carbon) grains in the LMC, and 54 +/- 32 Myr (72 +/- 43 Myr) for silicate (carbon) grains in the SMC. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass, and the fact that the dust-destroying isolated SNe in the MCs seem to be preferentially occurring in regions with higher than average dust-to-gas (D2G) mass ratios. We also calculate the supernova rate and the current star formation rate in the MCs, and use them to derive maximum dust injection rates by asymptotic giant branch (AGB) stars and core collapse supernovae (CCSNe). We find that the injection rates are an order of magnitude lower than the dust destruction rates by the SNRs. This supports the conclusion that, unless the dust destruction rates have been considerably overestimated, most of the dust must be reconstituted from surviving grains in dense molecular clouds. More generally, we also discuss the dependence of the dust destruction rate on the local D2G mass ratio and the ambient gas density and metallicity, as well as the application of our results to other galaxies and dust evolution models.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN22589 , The Astrophysical Journal (ISSN 1538-4357); 799; 2; 158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...