ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We present the results of XMM-Newton observations of NGC 507, a dominant elliptical galaxy in a small group of galaxies. After carefully considering various systematic effects on abundance measurements, we report 'super-solar' metal abundances (both Fe and a-elements) present in the hot ISM: ZFe = 2-3 times solar with an observational limit of as high as 4 times solar inside the D25 ellipse of NGC 507. This is the highest ZFe reported so far, and fully consistent with those expected by the stellar evolution models where heavy elements are enriched by both type II and Ia supernovae ejecta. No unusual constraint either on the SNe rate or IMF is required. Among various factors affecting the accurate abundance measurement, we find that selecting a proper emission model is most important. As opposed to the X-ray spectral data with limited s/n and poor spatial/spectral resolution obtained in the previous missions, the spatially resolved XMM spectra provide enough statistics to untie the model-Z degeneracy and statistically require at least 3 emission components in each concentric shell (2 thermal components representing a finite range of kT in the hot ISM + 1 hard LMXB component). We show that a simpler model (such as a two-component model) produce a much lower best-fit ZFe. The abundances of a-elements (most accurately determined by Si) is also found to be super-solar and its radio to Fe is close to the solar ratio, suggesting a considerably contribution of heavy elements from Type Ia SNe. We estimate approx. 70% of MFe in the hot ISM originate from Type Ia.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We have observed NGC 1316 (Fornax A) with the ROSAT HRI. In this paper, we present the results of these observations and we complement them with the spectral analysis of the archival PSPC data. The spectral properties suggest the presence of a significant component of thermal X-ray emission (greater than 60%), amounting to approx. 10(exp 9) solar mass of hot ISM. Within 3 feet from the nucleus of NGC 1316, the HRI X-ray surface brightness falls as r(exp -2) following the stellar light. In the inner approx. 30 inch., however, the X-ray surface brightness is significantly elongated, contrary to the distribution of stellar light, which is significantly rounder within 10 inch. This again argues for a non-stellar origin of the X-ray emission. This flattened X-ray feature is suggestive of either the disk-like geometry of a rotating cooling flow and/or the presence of extended, elongated dark matter. By comparing the morphology of the X-ray emission with the distribution of optical dust patches, we find that the X-ray emission is significantly reduced at the locations where the dust patches are more pronounced, indicating that at least some of the X-ray photons are absorbed by the cold ISM. We also compare the distribution of the hot and cold ISM with that of the ionized gas, using recently obtained H(sub alpha) CCD data. We find that the ionized gas is distributed roughly along the dust patches and follows the large scale X-ray distribution at r greater than 1 foot from the nucleus. However, there is no one-to-one correspondence between ionized gas and hot gas. Both morphological relations and kinematics suggest different origins for hot and cold ISM. The radio jets in projection appear to pass perpendicularly through the central X-ray ellipsoid. Comparison of thermal and radio pressures suggests that the radio jets are confined by the surrounding hot gaseous medium.
    Keywords: Astrophysics
    Type: NASA-CR-204109 , NAS 1.26:204109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-07
    Description: In this work, we present the analysis of the binary microlensing event OGLE-2018-BLG-0022 that is detected toward the Galactic bulge field. The dense and continuous coverage with the high-quality photometry data from ground-based observations combined with the space-based Spitzer observations of this long timescale event enables us to uniquely determine the masses M1=0.40 0.05Me and M2=0.13 0.01Me of the individual lens components. Because the lens-source relative parallax and the vector lens-source relative proper motion are unambiguously determined, we can likewise unambiguously predict the astrometric offset between the light centroid of the magnified images (as observed by the Gaia satellite) and the true position of the source. This prediction can be tested when the individual-epoch Gaia astrometric measurements are released.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN72289 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 876; 1; 81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...