ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-09
    Description: The Laser Interferometer Space Antenna (LISA) will open three decades of gravitational wave(GW) spectrum between 0.1 and 100 mHz, the mHz band [1]. This band is expected to be the richest part of the GW spectrum, in types of sources, numbers of sources, signal-to-noise ratios and discovery potential. When LISA opens the low-frequency window of the gravitational wave spectrum,around 2034, the surge of gravitational-wave astronomy will strongly compel a subsequent mission to further explore the frequency bands of the GW spectrum that can only be accessed from space. The 2020's is the time to start developing technology and studying mission concepts for a large-scale mission to be launched in the 2040's. The mission concept would then be proposed to Astro2030. Only space-based missions can access the GW spectrum between 108 and 1 Hz because of the Earth's seismic noise. This white paper surveys the science in this band and mission concepts that could accomplish that science. The proposed small scale activity is a technology development program that would support a range of concepts and a mission concept study to choose a specific mission concept for Astro2030. In this white paper, we will refer to a generic GW mission beyond LISA as bLISA.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70893
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-09
    Description: Harnessing the sheer discovery potential of GW Astronomy will require bold, deliberate,and sustained efforts to train and develop the requisite workforce. The next decaderequires a strategic plan to build - from the ground up - a robust, open, andwell-connected GW Astronomy community with deep participation from traditionalastronomers, physicists, data scientists, and instrumentalists. This basic infrastructure issorely needed as an enabling foundation for research. We outline a set ofrecommendations for funding agencies, universities, and professional societies to helpbuild a thriving, diverse, and inclusive new field.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70892
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-23
    Description: The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form (SO-Nominal) consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating (Stage 3) experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4. Construction of SO-Nominal is fully funded, and operations and data analysis are funded for part of the planned five-year observations. We will seek federal funding to complete the observations and analysis of SO-Nominal, at the $25M level. The SO has a low risk and cost efficient upgrade path the 6 m LAT can accommodate almost twice the baseline number of detectors and the SATs can be duplicated at low cost. We will seek funding at the $75M level for an expansion of the SO (SO-Enhanced) that fills the remaining focal plane in the LAT, adds three SATs, and extends operations by five years, substantially improving our science return. By this time SO may be operating as part of the larger CMB-S4 project. This white paper summarizes and extends material presented in, which describes the science goals of SO-Nominal, and which describe the instrument design.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-23
    Description: CMB-S4 is envisioned to be the ultimate ground-based cosmic microwave background experiment, crossing critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. The CMB-S4 science case is spectacular: the search for primordial gravitational waves as predicted from inflation and the imprint of relic particles including neutrinos, unique insights into dark energy and tests of gravity on large scales, elucidating the role of baryonic feedback on galaxy formation and evolution, opening up a window on the transient Universe at millimeter wavelengths, and even the exploration of the outer Solar System. The CMB-S4 sensitivity to primordial gravitational waves will probe physics at the highest energy scales and cross a major theoretically motivated threshold in constraints on inflation. The CMB-S4 search for new light relic particles will shed light on the early Universe 10,000 times farther back than current experiments can reach. Finally, the CMB-S4 Legacy Survey covering 70% of the sky with unprecedented sensitivity and angular resolution from centimeter- to millimeter-wave observing bands will have a profound and lasting impact on Astronomy and Astrophysics and provide a powerful complement to surveys at other wavelengths, such as LSST and WFIRST, and others yet to be imagined. We emphasize that these critical thresholds cannot be reached without the level of community and agency investment and commitment required by CMB-S4. In particular, the CMB-S4 science goals are out of the reach of any projected precursor experiment by a significant margin.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74204 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, 〉20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.
    Keywords: Astrophysics
    Type: M10-0222 , M10-0770 , 38th Committee On SPAce Research COSPAR Scientific Assembly; Jul 18, 2010 - Jul 25, 2010; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-20
    Description: The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Energetic particles in our own galaxy, galactic cosmic rays (GCRs), engage in a complex interplay with the interstellar medium and magnetic fields in the galaxy, giving rise to many of its key characteristics. For instance, GCRs act in concert with galactic magnetic fields to support its disk against its own weight. GCR ionization and heating are essential ingredients in promoting and regulating the formation of stars and protostellar disks. GCR ionization also drives astrochemistry, leading to the build up of complex molecules in the interstellar medium. GCR transport throughout the galaxy generates and maintains turbulence in the interstellar medium, alters its multi-phase structure, and amplifies magnetic fields. GCRs could even launch galactic winds that enrich the circumgalactic medium and alter the structure and evolution of galactic disks. As crucial as they are for many of the varied phenomena in our galaxy, there is still much we do not understand about GCRs. While they have been linked to supernova remnants (SNRs), it remains unclear whether these objects can fully account for their entire population, particularly at the lower (approximately less than 1 GeV per nucleon) and higher (~PeV) ends of the spectrum. In fact, it is entirely possible that the SNRs that have been found to accelerate CRs merely re-accelerate them, leaving the origins of the original GCRs a mystery. The conditions for particle acceleration that make SNRs compelling source candidates are also likely to be present in sources such as protostellar jets, superbubbles, and colliding wind binaries (CWBs), but we have yet to ascertain their roles in producing GCRs. For that matter, key details of diffusive shock acceleration (DSA) have yet to be revealed, and it remains to be seen whether DSA can adequately explain particle acceleration in the cosmos. This White Paper is the first of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. For the case of GCRs, MeV astronomy will: 1) Search for fresh acceleration of GCRs in SNRs; 2) Test the DSA process, particularly in SNRs and CWBs; 3) Search for signs of CR acceleration in protostellar jets and superbubbles.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66970
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN13709 , European Conference on Antennas and Propagation; Apr 06, 2014 - Apr 11, 2014; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: OWL [1] uses the Earth's atmosphere as a vast calorimeter to fully enable the emerging field of charged-particle astronomy with high-statistics measurements of ultra-high-energy cosmic rays (UHECR) and a search for sources of UHE neutrinos and photons. Confirmation of the Greisen-Zatsepin-Kuzmin (GZK) suppression above approx. 4 x 10(exp 19) eV suggests that most UHECR originate in astrophysical objects. Higher energy particles must come from sources within about 100 Mpc and are deflected by approx. 1 degree by predicted intergalactic/galactic magnetic fields. The Pierre Auger Array, Telescope Array and the future JEM-EUSO ISS mission will open charged-particle astronomy, but much greater exposure will be required to fully identify and measure the spectra of individual sources. OWL uses two large telescopes with 3 m optical apertures and 45 degree FOV in near-equatorial orbits. Simulations of a five-year OWL mission indicate approx. 10(exp 6) sq km/ sr/ yr of exposure with full aperture at approx. 6 x 10(exp 19) eV. Observations at different altitudes and spacecraft separations optimize sensitivity to UHECRs and neutrinos. OWL's stereo event reconstruction is nearly independent of track inclination and very tolerant of atmospheric conditions. An optional monocular mode gives increased reliability and can increase the instantaneous aperture. OWL can fully reconstruct horizontal and upward-moving showers and so has high sensitivity to UHE neutrinos. New capabilities in inflatable structures optics and silicon photomultipliers can greatly increase photon sensitivity, reducing the energy threshold for n detection or increasing viewed area using a higher orbit. Design trades between the original and optimized OWL missions and the enhanced science capabilities are described.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN10651 , International Cosmic Ray Conference (ICRC2013); Jul 02, 2013 - Jul 09, 2013; Rio de Janeiro; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-20
    Description: The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Within our own galaxy, we have seen that energetic particles engage in a complex interplay with the galactic environment and even drive many of its key characteristics (for more information, see the first white paper in this series). On cosmological scales, the energetic particles supplied by the jets of active galactic nuclei (AGN) are an important source of energy for the intracluster and intergalactic media, providing a mechanism for regulating star formation and black hole growth and cultivating galaxy evolution (AGN feedback). Gamma-ray burst (GRB) afterglows encode information about their circumburst environment, which has implications for massive stellar winds during previous epochs over the stellar lifecycle. As such, GRB afterglows provide a means for studying very high-redshift galaxies since GRBs can be detected even if their host galaxy cannot. It has even been suggest that GRB could be used to measure cosmological distance scales if they could be shown to be standard candles. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. Despite the enormous progress in particle-in-cell and magnetohydrodynamic simulations, we have yet to pinpoint the processes involved in jet formation and collimation and the conditions under which they can occur. For that matter, we have yet to identify the mechanism(s) through which the jet accelerates energetic particles is it the commonly invoked diffusive shock acceleration process or is another mechanism, such as magnetic reconnection, required? Do AGNs and GRBs accelerate hadrons, and if so, do they accelerate them to ultra-high energies and are there high-energy neutrinos associated with them? MeV gamma-ray astronomy, enabled by technological advances that will be realized in the coming decade, will provide a unique and indispensable perspective on the persistent mysteries of the energetic universe. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. Specifically, MeV astronomy will: 1. Determine whether AGNs accelerate CRs to ultra-high energies; 2. Provide the missing pieces for the physics of the GRB prompt emission; 3. Measure magnetization in cosmic accelerators and search for acceleration via reconnection.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66972
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: The Jet Propulsion Laboratory (JPL) is developing the Low Temperature Microgravity Physics Facility (LTMPF). The LTMPF is a multiple user and multiple flight facility that will provide a long duration low temperature environment for performing state of the art experiments at the International Space Station (ISS). During each mission, two distinct primary experiments will be accommodated. Secondary experiments utilizing the hardware built for the primary experiments will also be accommodated during each mission. Over the past year, much progress has occurred on the LTMPF as the flight hardware has started to be built. Also, many changes have occurred. Last summer, the initial flight of the LTMPF was delayed until early 2008 by a 2-year slip in the delivery of the Japanese Experiment Module (KIBO) Exposed Facility of the ISS, where the LTMPF will be attached when it flies. Finally, the experiments that will fly as part of the first mission have been changed so that one Gravitational and Relativistic experiment and one Low Temperature Condensed Matter experiment will fly on each flight of the LTMPF. Therefore, the experiments that will fly on the initial mission of the LTMPF will be DYNAMX and the Superconducting Microwave Oscillator Experiment (SUMO).
    Keywords: Astrophysics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 73; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...