ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The R Aqr jet was observed with the VLA B-configuration at two epochs separated by approximately 13.2 yr. Comparison of the resulting 6 cm continuum images show that the radio jet has undergone a lateral counterclockwise rotation of approximately 6 deg-12 deg on the plane of the sky. The model of jet parcels on independent trajectories is difficult to reconcile with these observations and leads us to consider a path-oriented jet (i.e., younger parcels follow the same path as older parcels). Comparison of the most recent radio image with a nearly contemporaneous HST/FOC ultraviolet image at approximately 2330 Angstroms suggests that the ultraviolet emission lies along the leading side of the rotating radio jet. In conjunction with a proper motion analysis of the jet material that yields empirical space-velocity and resulting acceleration-magnitude relationships as a function of distance from the central source, we evaluate the observational results in terms of a schematic model in which the jet emission consists of plane-parallel isothermal shocks along the leading edge of rotation. In such a radiating shock, the ultraviolet-emitting region is consistent with the adiabatic region in the form of a high-temperature, low-density sheath that surrounds the cooled postshock radio-emitting region. Within the context of the schematic model, we obtain the temperatures, densities, and pressures within the preshock, adiabatic, and postshock regions as a function of distance from the central source; the physical parameters so derived compare favorably to previously published estimates. We obtain a total jet mass of 3.1 x 10(exp -5) solar mass and an age of approximately 115 yr. We evaluate the model in the context of its density-boundary condition, its applicability to an episodic or quasi-continuous jet, and angular momentum considerations.
    Keywords: Astrophysics
    Type: NASA/CR-97-207870 , NAS 1.26:207870 , Astrophysical Journal; 490; 302-310
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: We report a kinematic study of the symbiotic star system R Aqr derived from [N H]lambda 6584 emission observations with a Fabry-Perot imaging spectrometer. The [N II] spatial structure of the R Aqr jet, first observed circa 1977, and surrounding hourglass-shaped nebulosity, due to an explosion approximately 660 years ago, are derived from 41 velocity planes spaced at approximately 12 km/s intervals. Fabry-Perot imagery shows the elliptical nebulosity comprising the waist of the hourglass shell is consistent with a circular ring expanding radially at 55 km/s as seen at an inclination angle, i approximately 70 deg. Fabry-Perot imagery shows the two-sided R Aqr jet is collimated flow in opposite directions. The intensity-velocity structure of the strong NE jet component is shown in contrast to the amorphous SW jet component. We offer a idealized schematic model for the R Aqr jet motion which results in a small-scale helical structure forming around a larger-scale helical path. The implications of such a jet model are discussed. We present a movie showing a side-by-side comparison of the spatial structure of the model and the data as a function of the 41 velocity planes.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...