ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: We have measured [O I] 63 mm and [Si II] 35 mm in the central 44' (700 pc) of the starburst galaxy M82. The luminosities in these transitions are each ~0.1 percent of the bolometric luminosity. We model the [O I] in M82 as arising from warm neutral gas photodissociated by FUV flux from OB stars, while most of the [Si II] emission arises from associated H II regions.!.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: The Palomar Integral Field Spectrograph was used to probe a variety of environments in nine nearby galaxies that span a range of morphological types, luminosities, metallicities, and infrared-to-blue ratios.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 601; 813-830
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: We present and discuss ISO observations of IC443, a supernova remnant interacting with a molecular cloud. An SWS spectrum centered on molecular hydrogen clump R10E (RA(2000) = 6 17 7.6, Decl(2000) = 22 25 34.6) is dominated by strong [SiII] (34 microns) emission and the pure rotational transitions of molecular hydrogen ranging from 0-0 S(1) to 0-0 S(13). Fits to these H$-2$ lines imply a large column (approx. 7E19 cm$ {-2)$) of warm (T approx. 700 K) gas and an ortho/para ratio for hydrogen near 3. LWS Fabry-Perot spectra of [OI] (63 microns) and [CII] (158 microns) at positions R10E and C (RA(2000) = 6 17 42.8, Decl(2000) = 22 21 38.1) find broad (approx. 75 km/s), blue-shifted (-40 km/s) line profiles; their similarity strongly suggests a common, shock-generated origin for these two lines. The surprisingly large [CII]/[OI] ratio (approx. 0.1 to 0.2) confirms previous observations with the Kuiper Airborne Observatory. These [CII] and [OI] line intensities, the [SiII] intensity (above), and LWS grating measurements of OH (119 microns) and [OI] (145 microns) are all readily fit by a single, fast J-shock model. Although the [OI] (63) emission can alternatively be produced by a slow C-shock, this ensemble of lines can not be produced by such a shock and provides strong evidence for the existence of a J-shock. A 24-arcmin strip map shows that this far-infrared line emission is spatially correlated with the H$-2$ 1-0 S(1) emission, which most likely arises in an associated C-shock. In addition to this spatially correlated shock emission, the strip map identifies extended [CII] and [OI] emission with a significantly larger line ratio (approx. 0.6); this 'background' component is compared with current J-shock, C-shock, photo-dissociation region (PDR), and X-ray dissociation region (XDR) models in an effort to explain its origin.
    Keywords: Astrophysics
    Type: American Astronomical Meeting; May 25, 2003 - May 29, 2003; Nashville, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: We present images of a 90in. x 90in. field centered on BN in OMC-1, taken with the Near-Infrared Camera and MultiObject Spectrograph (NICMOS) aboard the Hubble Space Telescope. The observed lines are H2 1-0 S(l), Pa, [FeII] 1.64 pm, and the adjacent continua. The region is rich in interesting structures. The most remarkable are the streamers or "fingers" of H2 emission which extend from 15in. to 50in. from IRc2, seen here in unprecedented detail. Unlike the northern H2 fingers, the inner fingers do not exhibit significant [FeII] emission at theirdips, which we suggest is due to lower excitation. These observations also show that the general morphology of the Pa and [FeII] emission (both imaged for the first time in this region) bears a striking resemblance to that of the Ha and [SII] emission previously observed with WFPC2. This implies that these IR and optical lines are produced by radiative excitation on the surface of the molecular cloud. The Pa morphology of HH 202 is also very similar to its H a and [OIII] emission, again suggesting that the Pa in this object is photo-excited by the Trapezium, as has been suggested for the optical emission. We find evidence of shock-excited [FeII] in HH 208, where it again closely follows the morphology of [SII]. There is also H2 coincident with the [SII] and [FeII] emission, which may be associated with HH 208. Finally, we note some interesting continuum features: diffuse "tails" trailing from IRc3 and IRc4, more extensive observations of the "crescent" found by Stolovy, et al. (1998), and new observations of a similar oval object nearby. We also find a "V"-shaped region which may be the boundary of a cavity being cleared by IRc2.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: In protostellar cores where the dust temperature has been raised above 100K and subsequently allowed to fall below the condensation temperature of methanol, recondensation on to cooling grains removes methanol molecules from the gas at rates.faster (about 1000 times) than those of chemical reactions. Molecular recondensation can have a profound effect on the chemical composition of hot cores. The methanol chemistry of hot cores is solved analytically and the trend in molecule binding energies required is compared with theoretical and experimental values. It is demonstrated, through a model calculation incorporating recondensation, that it yields a consistent explanation of the similarity of the CH3OH , CH3OCH3 and HCOOCH3 abundances measured in G34.3 and W3(H2O). These observations suggest that the latter molecules could not be derived from CH3OH through gas phase reactions. The manner in which molecular recondensation could affect the interpretation of hot core chemistry in general, particularly of organic molecules, is briefly discussed.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...