ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We report the first hard X-ray observations with NuSTAR of the BL Lac-type blazar PKS2155-304, augmented with soft X-ray data from XMM-Newton and gamma-ray data from the Fermi Large Area Telescope, obtained in 2013April when the source was in a very low flux state. A joint NuSTAR and XMM spectrum, covering the energy range 0.5-60 keV, is best described by a model consisting of a log-parabola component with curvature Beta = -0.3(+0.2 -0.1) and a (local) photon index 3.04 +/- 0.15 at photon energy of 2 keV, and a hard power-law tail with photon index 2.2 +/- 0.4. The hard X-ray tail can be smoothly joined to the quasi-simultaneous gamma-ray spectrum by a synchrotron self-Compton component produced by an electron distribution with index p 2.2. Assuming that the power-law electron distribution extends down to gamma (sub min) = 1 and that there is one proton per electron, an unrealistically high total jet power of Lp approximately 10 (exp 47) erg s(sub -1) is inferred. This can be reduced by two orders of magnitude either by considering a significant presence of electron-positron pairs with lepton-to-proton ratio n(sub e+e-/n(sub p) approx. 30, or by introducing an additional, low-energy break in the electron energy distribution at the electron Lorentz factor gamma br1 approx. 100. In either case, the jet composition is expected to be strongly matter-dominated
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN47029 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 831; 2; 142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Be X-ray binary EXO2030+375 was in an extended low-luminosity state during most of 2016. We observed this state with NuSTAR and Swift, supported by INTEGRAL observations and optical spectroscopy with the Nordic Optical Telescope (NOT). We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller e ect. The H data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTAR data, taken at a 3-78 keV luminosity of 6:8 1035 erg s-1 (for a distance of 7.1 kpc), are nicely described by standard accreting pulsar models such as an absorbed power law with a high-energy cuto. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phaseresolved spectroscopy we find a peculiar variation of the photon index from 1.5 to 2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newton at much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 1034 erg s-1 where the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the accretion being stopped by the propeller e ect and we only observe the neutron star surface cooling.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60527 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 606
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: Hipparcos proper motion and parallax data are combined for nearby stars with ground-based radial velocity measurements in order to identify stars which may have passed, or will pass, close enough to the sun to perturb the Oort cloud. Close stellar encounters could deflect large numbers of comets into the inner solar system, with possible serious consequences for impact hazards on the earth. Only one star, Gliese 710 is found with a predicted closest approach of less than 0.5 pc, although several stars come within 1 pc during a 8.5 M year interval. In most cases, the uncertainty in closest approach distance is dominated by uncertainties in the barycenter motion of binary systems. A program to obtain new radial velocities for stars in the sample with no previously published values is underway.
    Keywords: Astrophysics
    Type: ; 617-620
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We observed the Galactic black hole candidate XTE J1650-500 early in its fall of 2001 outburst with the XMM-Newton European Photon Imaging pn Camera (EPIC-pn). The observed spectrum is consistent with the source having been in the very high state. We h d a broad, skewed Fe Kar emission line that suggests the primary in this system may be a Kerr black hole and that indicates a steep disk emissivity profile that is hard to explain in terms of a standard accretion disk model. These results are quantitatively and qualitatively similar to those from an XMM-Newton observation of the Seyfert galaxy MCG -6-30-15. The steep emissivity in MCG -6-30-15 may be explained by the extraction and dissipation of rotational energy from a black hole with nearly maximal angular momentum or from material in the plunging region via magnetic connections to the inner accretion disk. If this process is at work in both sources, an exotic but fundamental general relativistic prediction may be confirmed across a factor of l0(exp 6) in black hole mass. We discuss these results in terms of the accretion flow geometry in stellar-mass black holes and the variety of enigmatic phenomena often observed in the very high state.
    Keywords: Astrophysics
    Type: Astrophysical Journal; 570; L69-L73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We have imaged the bipolar pre-planetary nebula IRAS 16342-3814 with the Keck adaptive optics (AO) system in four near-infrared bands in the 1.6-4.7 (micro)m range. The lobes, which showed smoothly varying brightness distributions in previous optical images taken with the Hubble Space Telescope, have a limb-brightened appearance in the AO images, with a remarkable corkscrew structure inscribed on the lobe walls. A well-collimated, precessing jet with a diameter less than or approximately equal to 100 AU and a precession period less than or approximately equal to 50 yr, interacting with ambient circumstellar material, is most likely responsible for the corkscrew structure and the lobes, as indicated by a detailed comparison of our observations with published numerical simulations. The very red colors of the lobes in the near-infrared, coupled with their visibility at optical wavelengths, require that at least half, but not all, of the light of the central star be trapped by a compact circumstellar dust cloud heated to approximately 600-700 K and reradiated in the infrared. The lobes are thus illuminated both by the infrared light from this dust cloud as well as by the optical light from the central star.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 622; L53-L56
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We report high angular resolution (approx.1") CO J=3-2 interferometric mapping using the Submillimeter Array (SMA) of IRAS 22036+5306 (I22036), a bipolar preplanetary nebula (PPN) with knotty jets discovered in our HST snapshot survey of young PPNs. In addition, we have obtained supporting lower resolution (approx.10") CO and 13CO J=1-0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J=3-2 observations show the presence of a very fast (approx.220 km/s), highly collimated, massive (0.03 Solar Mass) bipolar outflow with a very large scalar momentum (about 10(exp 39) g cm/s), and the characteristic spatiokinematic structure of bow shocks at the tips of this outflow. The H(alpha) line shows an absorption feature blueshifted from the systemic velocity by approx.100 km/s, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I22036, as in most PPNs, cannot be driven by radiation pressure. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I22036, implying a very substantial mass (0.02-0.04 Solar Mass) of large (radius 〉 or approx.1 mm), cold (〈 or approx.50 K) dust grains associated with I22036's toroidal waist. We also find that the C-13/C-12 ratio in I22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the extended dust shell and the torus) and the high C-13/C-12 ratio in I22036 provides strong support for this object having evolved from a massive (〉 or approx.4 Solar Mass) progenitor in which hot-bottom-burning has occurred.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 653; 1241-1252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work wereported various rate estimates whose 90% confidence intervals fell in the range 2600 Gpc(exp -3) yr(exp -1). Here we givedetails on our method and computations, including information about our search pipelines, a derivation of ourlikelihood function for the analysis, a description of the astrophysical search trigger distribution expected frommerging BBHs, details on our computational methods, a description of the effects and our model for calibrationuncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44086 , The Astrophysical Journal: Supplement Series (ISSN 0067-0049) (e-ISSN 1538-4365); 227; 2; 14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55 S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory in the opposite direction and with a Tower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4800 km east west and 2500 km north south, with those produced by the SL9 fragments and dynamical calculations of pre-impact orbit indicates that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890 nm and K (2.03--2.36 micrometer) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary clouds.
    Keywords: Astrophysics
    Type: Astrophysocal Journal Letters; 715; 2; L155-L159
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We present initial analysis and conclusions from plasma observations made during the reported Mars Dust plume event of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude plume over the Martian dawn terminator [Sanchez-Lavega7 et al., Nature, 2015, doi:10.1038nature14162], the origin of which remains to be explained. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the surface region, but at the opposing terminator. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that a similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN30869 , Journal of Geophysical Research (ISSN 2169-9380) (e-ISSN 2169-9402); 121; 4; 3139-3154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: In Titan's atmosphere, composed mainly of N2 (95-98%) and CH4 (2-5%), a complex chemistry occurs at low temperature, and leads to the production of heavy organic molecules and subsequently solid aerosols. Here, we used the Titan Haze Simulation (THS) experiment, an experimental setup developed at the NASA Ames COSmIC simulation facility to study Titan's atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature ( approximately 150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (approximately 200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas- and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics. A recent mass spectrometry[1] study of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan's atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini's CAPS-IBS instrument. The results of a complementary study of the solid phase are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited on various substrates for ex situ analysis. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates. A mass spectrometry analysis of the solid phase has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile functional groups, showing evidence of nitrogen chemistry. These complementary studies show the high potential of THS to better understand Titan's chemistry and the origin of aerosol formation.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN24743 , IAU XXIX General Assembly; Aug 03, 2015 - Aug 14, 2015; Honolulu,HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...