ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work wereported various rate estimates whose 90% confidence intervals fell in the range 2600 Gpc(exp -3) yr(exp -1). Here we givedetails on our method and computations, including information about our search pipelines, a derivation of ourlikelihood function for the analysis, a description of the astrophysical search trigger distribution expected frommerging BBHs, details on our computational methods, a description of the effects and our model for calibrationuncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.
    Schlagwort(e): Astrophysics
    Materialart: GSFC-E-DAA-TN44086 , The Astrophysical Journal: Supplement Series (ISSN 0067-0049) (e-ISSN 1538-4365); 227; 2; 14
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-19
    Beschreibung: Young, hot gas giant planets at large separations from their primaries have been directly imaged around several nearby stars. More such planets will likely be detected by ongoing and new imaging surveys with instruments such as the Gemini Planet Imager (GPI). Efforts continue to model the spectra of these planets in order to constrain their masses, effective temperatures, composition, and cloud structure. One potential tool for analyzing these objects, which has received relatively less attention, is polarization. Linear polarization of gas giant exoplanets can arise from the combined influences of light scattering by atmospheric dust and a rotationally distorted shape. The oblateness of gas giant planet increases of course with rotation rate and for fixed rotation also rises with decreasing gravity. Thus young, lower mass gas giant planets with youthful inflated radii could easily have oblateness greater than that of Saturn s 10%. We find that polarizations of over 1% may easily be produced in the near-infrared in such cases. This magnitude of polarization may be measurable by GPI and other instruments. Thus if detected, polarization of a young Jupiter places constraints on the combination of its gravity, rotation rate, and degree of cloudiness. We will present results of our multiple scattering analysis coupled with a self-consistent dusty atmospheric models to demonstrate the range of polarizations that might be expected from resolved exoplanets and the range of parameter space that such observations may inform.
    Schlagwort(e): Astrophysics
    Materialart: 42nd Annual Meeting of the Division of Planetary Sciences; Oct 03, 2012 - Oct 08, 2012; Pasadena, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...