ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 397-404
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: We report the first observations of H15 alpha (169.4114 microns) and H10 alpha (52.5349 microns) in MWC 349 from the KAO. We obtain a 3 sigma upper limit of 2 x 10(exp -19) W/sq cm for H15 alpha and a flux of 3.6 +/- 1.3 x 10(exp -19) W/sq for H10 alpha. These fluxes are consistent with an appreciable excess due to laser amplification down to quantum numbers n approx. equals 10.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 271-274
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The line trio (O III) 52, 88 microns, (N III) 57 microns has been measured in a number of planetary nebulae (PNe) and used to determine nebular properties such as density, temperature, and N/O abundance. The N/O ratios, which are elevated in many PNe due to nuclear processing in the progenitor star, agree well with optical determinations. The (O I) 63 micron line has been detected in about a dozen PNe, demonstrating the ubiquity of neutral envelopes. Measurements of (O I) 63, 146 microns and (C II) 158 microns, the primary cooling lines from the ionized/neutral interface zone or photodissociation region (PDR), have been made for six PNe. The line strengths indicate that the line-emitting regions are warm (T greater than or equal to 500 K), dense (log n greater than or equal to 4), and contain of order 0.1 solar masses.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 387-394
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: We present measurements of the far-infrared (FIR) fine structure lines [S III] (33 microns), [Si II] (35 microns), [O III] (51, 88 microns), [O I] (63 microns) and [C II] (158 microns) and the adjacent continua along a scan crossing the E2 and W1 thermal radio filaments in the Galactic center 'Arc'. The deduced electron density and excitation vary along the scan by less than factors of two and three, respectively. The properties of the two filaments are similar: the line and continuum fluxes peak at the radio ridge, and the ridge/off-ridge contrast is greatest for the FIR continuum and ionized lines, lower for the single dish radio measurements (Sofue et al. 1986), and smallest for the low excitation lines. The spatial coincidence of the FIR and radio peaks demonstrates that any excitation mechanism for the radio continuum filaments must also account for the FIR line and continuum emission. The FIR luminosity of approx. 3 x 10(exp 5) Solar Luminosity per beam, and the association of [O III] emission with the filaments poses difficulties for shock and MHD models. Photoionization of molecular cloud edges by a random distribution of stars is the most likely excitation mechanism among those proposed. The continuum and the low excitation line fluxes are consistent with an origin in photodissociated molecular material adjacent to the photoionized gas.
    Keywords: Astrophysics
    Type: Airborne Astronomy; Jul 05, 1994 - Jul 08, 1994; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: We present and discuss ISO observations of IC443, a supernova remnant interacting with a molecular cloud. An SWS spectrum centered on molecular hydrogen clump R10E (RA(2000) = 6 17 7.6, Decl(2000) = 22 25 34.6) is dominated by strong [SiII] (34 microns) emission and the pure rotational transitions of molecular hydrogen ranging from 0-0 S(1) to 0-0 S(13). Fits to these H$-2$ lines imply a large column (approx. 7E19 cm$ {-2)$) of warm (T approx. 700 K) gas and an ortho/para ratio for hydrogen near 3. LWS Fabry-Perot spectra of [OI] (63 microns) and [CII] (158 microns) at positions R10E and C (RA(2000) = 6 17 42.8, Decl(2000) = 22 21 38.1) find broad (approx. 75 km/s), blue-shifted (-40 km/s) line profiles; their similarity strongly suggests a common, shock-generated origin for these two lines. The surprisingly large [CII]/[OI] ratio (approx. 0.1 to 0.2) confirms previous observations with the Kuiper Airborne Observatory. These [CII] and [OI] line intensities, the [SiII] intensity (above), and LWS grating measurements of OH (119 microns) and [OI] (145 microns) are all readily fit by a single, fast J-shock model. Although the [OI] (63) emission can alternatively be produced by a slow C-shock, this ensemble of lines can not be produced by such a shock and provides strong evidence for the existence of a J-shock. A 24-arcmin strip map shows that this far-infrared line emission is spatially correlated with the H$-2$ 1-0 S(1) emission, which most likely arises in an associated C-shock. In addition to this spatially correlated shock emission, the strip map identifies extended [CII] and [OI] emission with a significantly larger line ratio (approx. 0.6); this 'background' component is compared with current J-shock, C-shock, photo-dissociation region (PDR), and X-ray dissociation region (XDR) models in an effort to explain its origin.
    Keywords: Astrophysics
    Type: American Astronomical Meeting; May 25, 2003 - May 29, 2003; Nashville, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Far-infrared hydrogen recombination lines H15(alpha)(169.4 micrometers), H12(alpha)(88.8 micrometers), and H10(alpha)(52.5 micrometers) were detected in the peculiar luminous star MWC 349A from the Kuiper Airborne Observatory. Here it is shown that at least H15(alpha) is strongly amplified, with the probable amplification factor being greater than or about equal to 10(exp 3) and a brightness temperature that is greater than or about equal to 10(exp 7) kelvin. The other two lines also show signs of amplification, although to a lesser degree. Beyond H10(alpha) the amplification apparently vanishes. The newly detected amplified lines fall into the laser wavelength domain. These lasers, as well as the previously detected hydrogen masers may originate in the photoionized circumstellar disk of MWC 349A and constrain the disk's physics and structure.
    Keywords: Astrophysics
    Type: NASA/CR-96-207127 , NAS 1.26:207127 , Science; 272; 1459-1461
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: Although abundance gradients in the Milky Way Galaxy certainly exist, details remain uncertain, particularly in the inner Galaxy, where stars and H II regions in the Galactic plane are obscured optically. In this paper we revisit two previously studied, inner Galaxy H II regions: G333.6-0.2 and W43. We observed three new positions in G333.6-0.2 with the Kuiper Airborne Observatory and reobserved the central position with the Infrared Space Observatory's Long Wavelength Spectrometer in far-infrared lines of S++, N++, N+, and O++. We also added the N+ lines at 122 and 205 microns to the suite of lines measured in W43 by Simpson et al.. The measured electron densities range from approx. 40 to over 4000 per cu cm in a single HII region, indicating that abundance analyses must consider density variations, since the critical densities of the observed lines range from 40 to 9000 per cu cm. We propose a method to handle density variations and make new estimates of the S/H and N/H abundance ratios. We find that our sulfur abundance estimates for G333.6-0.2 and W43 agree with the S/H abundance ratios expected for the gradient previously reported by Simpson et al., with the S/H values revised to be smaller owing to changes in collisional excitation cross sections. The estimated N/H, S/H, and N/S ratios are the most reliable because of their small corrections for unseen ionization states (〈 or approx. 10%). The estimated N/S ratios for the two sources are smaller than what would be calculated from the N/H and S/H ratios in our previous paper. If all low excitation H II regions had similar changes to their N/S ratios as a result of adding measurements of N+ to previous measurements of N++, there would be no or only a very small gradient in N/S. This is interesting because nitrogen is considered to be a secondary element and sulfur is a primary element in galactic chemical evolution calculations. We compute models of the two H II regions to estimate corrections for the other unseen ionization states. We find, with large uncertainties, that oxygen does not, have a high abundance, with the result that the N/O ratio is as high (approx. 0.35) as previously reported. The reasons for the uncertainty in the ionization corrections for oxygen are both the non-uniqueness of the H II region models and the sensitivity of these models to different input atomic data and stellar atmosphere models. We discuss these predictions and conclude that only a few of the latest models adequately reproduce H II region observations, including the well-known, relatively-large observed Ne++/O++ ratios in low- and moderate-excitation H II regions.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.
    Keywords: Astrophysics
    Type: UV, Optical and IR Space Telescopes and Instruments; Mar 26, 2000 - Mar 31, 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN53613
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: This document describes the Kepler Certied False Positive table hosted at the Exoplanet Archive1, herein referred to as the CFP table. This table is the result of detailed examination by the Kepler False Positive Working Group (FPWG) of declared false positives in the Kepler Object of Interest (KOI) tables (see, for example, Batalha et al. (2012); Burke et al.(2014); Rowe et al. (2015); Mullally et al. (2015); Coughlin et al. (2015b)) at the Exoplanet Archive. A KOI is considered a false positive if it is not due to a planet orbiting the KOI's target star. The CFP table contains all KOIs in the Exoplanet Archive cumulative KOI table. The purpose of the CFP table is to provide a list of certified false positive KOIs. A KOI is certified as a false positive when, in the judgement of the FPWG, there is no plausible planetary interpretation of the observational evidence, which we summarize by saying that the evidence for a false positive is compelling. This certification process involves detailed examination using all available data for each KOI, establishing a high-reliability ground truth set. The CFP table can be used to estimate the reliability of, for example, the KOI tables which are created using only Kepler photometric data, so the disposition of individual KOIs may differ in the KOI and CFP tables. Follow-up observers may find the CFP table useful to avoid observing false positives.
    Keywords: Astrophysics
    Type: KSCI-19093-003 , ARC-E-DAA-TN46090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...