ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection
    Keywords: Astrophysics
    Type: GSFC.JA.7370.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.
    Keywords: Astrophysics
    Type: GSFC.JA.4297.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: We report about the multiwavelength campaign on the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.5846) performed in 2010 July-September and triggered by high activity as measured by Fermi/LAT. The peak luminosity in the 0.1 - 100 GeV energy band exceeded, for the first time in this type of source, the value of 1048 erg/s, a level comparable to the most powerful blazars. The comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar like 3C 273 shows that the power emitted at gamma rays is extreme.
    Keywords: Astrophysics
    Type: GSFC.JA.5919.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs)from supermassive black hole binaries (SMBHBs). With continued observations of a large sampleof millisecond pulsars, PTAs will reach this major milestone within the next decade. Already,SMBHB candidates are being identied by electromagnetic surveys in ever-increasing numbers;upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumentalin identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) obser-vations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with theirhost galaxies, the dynamical interactions between binaries and their galactic environments, and thefundamental physics of accretion. Multi-messenger observations can also make SMBHBs `standardsirens' for cosmological distance measurements out to z ~ 0.5 LIGO has already ushered in break-through insights in our knowledge of black holes. The multi-messenger detection of SMBHBs withPTAs will be a breakthrough in the years 2020-2030 and beyond, and prepare us for LISA to helpcomplete our views of black hole demographics and evolution at higher redshifts.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66951
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Organics found in Comet Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some are similar, but not identical, to those in interplanetary dust particles (IDPs) and carbonaceous meteorites. A new class of aromatic-poor organic material is also present. The organics are rich in O and N compared to meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than meteorites and IDPs. D and 15N suggest that some organics have an interstellar/protostellar heritage. While the variable extent of modification of these materials by impact capture is not yet fully constrained, a remarkably diverse suite of organic compounds is present and identifiable within the returned samples.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The flat spectrum radio quasar (FSRQ) PKS 2123463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.14603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN9551 , Monthly Notices of the Royal Astronomical Society; 427; 1; 893-900
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work wereported various rate estimates whose 90% confidence intervals fell in the range 2600 Gpc(exp -3) yr(exp -1). Here we givedetails on our method and computations, including information about our search pipelines, a derivation of ourlikelihood function for the analysis, a description of the astrophysical search trigger distribution expected frommerging BBHs, details on our computational methods, a description of the effects and our model for calibrationuncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44086 , The Astrophysical Journal: Supplement Series (ISSN 0067-0049) (e-ISSN 1538-4365); 227; 2; 14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44111 , SPIE Astronomical Telescopes + Instrumentation; Jun 26, 2016 - Jul 01, 2016; Edinburgh, Scotland; United Kingdom|Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; 9905; 99051R
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-26
    Description: The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events are from the same physical origin, their different time-dependent spectral evolution suggest they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.
    Keywords: Astrophysics
    Type: GSFC.JA.5918.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and radio flares could be established. Conclusions. If the gamma-ray flux is a mixture of synchrotron self-Compton (SSC) and external Compton (EC) emission, the observed GeV spectral variability may result from varying relative contributions of these two emission components. This explanation fits the observed changes in the overall IR to gamma-ray SED.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN21932
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...