ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (6)
  • LUNAR AND PLANETARY EXPLORATION  (4)
  • SPACE SCIENCES (GENERAL)  (1)
  • 1
    Publication Date: 2019-06-28
    Description: The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-192113 , NAS 1.26:192113
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The nature of the nonlinear evolution of Kelvin-Helmholtz instability in the presence of sheared magnetic fields was investigated via numerical simulation. Models of the magnetosheath-magnetopause boundary in earth's tail and stream interaction regions in the inner heliosphere were studied. The development of the instability is influenced strongly by the orientation and magnitude of the magnetic field. Large vortical structures that resemble observations in the earth's tail can form while other cases generate turbulent spectra that provide insight into the generation of Alfven turbulence in the solar wind.
    Keywords: SPACE SCIENCES (GENERAL)
    Type: ESA, Proceedings of the 21st ESLAB Symposium on Small Scale Plasma Processes in the Solar Chromosphere(Corona, Interplanetary Medium and Planetary Magnetospheres; p 115-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-194807 , NAS 1.26:194807
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.
    Keywords: Astrophysics
    Type: GSFC.JA.4743.2011 , The Astrophysical Journal; 739; 9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Spatial derivatives of the electron moments can be estimated using data from the four Cluster spacecraft. Using spatial derivatives of the velocity we have computed the vorticity in the plasmasheet for several crossings. What we have found is that vorticity appears to be a common feature in the inner plasmasheet. We will show a number of examples. In at least some of the observations the vorticity is well correlated with the passage of Cluster through the ion diffusion region of known reconnection events. That most of the vorticity events observed are reconnection related cannot be dismissed and in fact observations of vorticity may provide a means to locate times when the Cluster spacecraft are magnetically connected to regions where reconnection is taking place. Understanding the role and source of the vorticity should advance our understanding of the dissipation of the turbulence associated with reconnection. In the course of the presentation we will also touch on the methods used to estimate the spatial derivatives as well as the limitations and assumptions involved.
    Keywords: Astrophysics
    Type: SM54A-03 , GSFC.ABS.5720.2011 , American Geophysical Union (AGU) 2011 Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.
    Keywords: Astrophysics
    Type: SH43D-02 , American Geophysical Union 2011 Fall Meeting; Dec 04, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: We present determinations of compressibility and vorticity in the magnetosheath and plasma sheet using moments from the four PEACE thermal electron instruments on CLUSTER. The methodology used assumes a linear variation of the moments throughout the volume defined by the four satellites, which allows spatially independent estimates of the divergence, curl, and gradient. Once the vorticity has been computed, it is possible to estimate directly the Taylor microscale. We have shown previously that the technique works well in the solar wind. Because the background flow speed in the magnetosheath and plasma sheet is usually less than the Alfven speed, the Taylor frozen-in-flow approximation cannot be used. Consequently, this four spacecraft approach is the only viable method for obtaining the wave number properties of the ambient fluctuations. Our results using electron velocity moments will be compared with previous work using magnetometer data from the FGM experiment on Cluster.
    Keywords: Astrophysics
    Type: CLUSTER; Sep 21, 2008 - Sep 26, 2008; NH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: High-resolution magnetic field measurements from the first outbound crossing of the Uranian bowshock by the Voyager 2 spacecraft between January 27 and 30, 1986, are examined. Evidence is found of enhanced whistler wave activity in the vicinity of three shock crossings but little or no evidence of such activity elsewhere. Two wave events display two separate and simultaneous wave enhancements each. From an investigation of these events using high-resolution field data, it is concluded that they are analogous to those whistler waves upstream of the earth's bow shock that are driven by beams of electrons. An instability analysis is presented to show that a single electron beam with reasonable parameters can penetrate both of the upstream and downstream of a shock crossing. This event displays only one relatively broad spectral enhancement in the same frequency regime and is left-hand polarized in the spacecraft frame. It is argued that this event is the result of a gyrating proton distribution associated with the oblique shock.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Observations of magnetic field wave bursts upstream of the Uranian bow shock are reported which were recorded prior to the inbound shock crossing. Three wave types are identified. One exhibits a broad spectral enhancement from a few millihertz to about 50 mHz and is seen from 17 to 10 hr prior to the inbound shock crossing. It is argued that these waves are whistler waves that have propagated upstream from the shock. A second wave type has a spacecraft frame frequency between 20 and 40 mHz, is seen only within or immediately upstream of the shock pedestal, is right-hand polarized in the spacecraft frame, and has a typical burst duration of 90 s. The third wave type has a spacecraft frame frequency of about 0.15 Hz, is seen exclusively within the shock pedestal, is left-hand polarized in the spacecraft frame, and has a burst duration lasting up to 4 min. It is argued that the low-frequency bursts are whistler waves with phase speed comparable to, but in excess of, the solar wind speed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 17035-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: We have developed a three-fluid, fully three-dimensional magnetohydrodynamic model of the solar wind plasma in the outer heliosphere as a co-moving system of solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Our approach takes into account the effects of electron heat conduction and dissipation of Alfvenic turbulence on the spatial evolution of the solar wind plasma and interplanetary magnetic fields. The turbulence transport model is based on the Reynolds decomposition of physical variables into mean and fluctuating components and uses the turbulent phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. We solve the coupled set of the three-fluid equations for the mean-field solar wind and the turbulence equations for the turbulence energy, cross helicity, and correlation length. The equations are written in the rotating frame of reference and include heating by turbulent dissipation, energy transfer from interstellar pickup protons to solar wind protons, and solar wind deceleration due to the interaction with the interstellar hydrogen. The numerical solution is constructed by the time relaxation method in the region from 0.3 to 100 AU. Initial results from the novel model are presented.
    Keywords: Astrophysics
    Type: SH53A-2027 , GSFC.ABS.5716.2011 , American Geophysical Union 2011 Fall Meeting; Dec 04, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...