ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-braid) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 361-365; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-band) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 75-79; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...