ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: The International Focusing Optics Collaboration for micron Crab Sensitivity (InFOC micronS) balloon-borne hard x-ray incorporates graded multilayer technology to obtain significant effective area at energies previously inaccessible to x-ray optics. The telescope mirror consists of 2040 segmented thin aluminum foils coated with replicated Pt/C multilayers. A sample of these foils was scanned using a pencil-beam reflectometer to determine, multilayer quality. The results of the reflectometer measurements demonstrate our capability to produce large quantity of foils while maintaining high-quality multilayers with a mean Nevot-Croce interface roughness of 0.5nm. We characterize the performance of the complete InFOC micronS telescope with a pencil beam raster scan to determine the effective area and encircled energy function of the telescope. The effective area of the complete telescope is 78, 42 and 22 square centimeters at 20 30 and 40 keV. respectively. The measured encircled energy fraction of the mirror has a half-power diameter of 2.0 plus or minus 0.5 arcmin (90% confidence). The mirror successfully obtained an image of the accreting black hole Cygnus X-1 during a balloon flight in July, 2001. The successful completion and flight test of this telescope demonstrates that graded-multilayer telescopes can be manufactured with high reliability for future x-ray telescope missions such as Constellation-X.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present observations with the Chandra X-Ray Observatory of the pulsar wind nebula (PWN) powered by the energetic young pulsar B1509-58. These data confirm the complicated morphology of the system indicated by previous observations, and in addition reveal several new components to the nebula. The overall PWN shows a clear symmetry axis oriented at a position angle 150" +- 5" (north through east), which we argue corresponds to the pulsar spin axis. We show that a previously identified radio feature matches well with the overall extent of the X-ray PWN, and propose the former as the long-sought radio nebula powered by the pulsar. We further identify a bright collimated feature, at least 4' long, lying along the nebula's main symmetry axis; we interpret this feature as a physical outflow from the pulsar, and infer a velocity for this jet of greater than 0.2c. The lack of any observed counterjet implies that the pulsar spin axis is inclined at -30" to the line of sight, contrary to previous estimates made from lower resolution data. We also identify a variety of compact features close to the pulsar. A pair of semicircular X-ray arcs lie 17" and 30" to the north of the pulsar; the latter arc shows a highly polarized radio counterpart. We show that these features can be interpreted as ion compression wisps in a particle-dominated equatorial flow, and use their properties to infer a ratio of electromagnetic to particle energy in pairs at the wind shock 0.005, similar to that seen in the Crab Nebula. We further identify several compact knots seen very close to the pulsar; we use these to infer cr 〈 0.003 at a separation from the pulsar of 0.1 pc.
    Keywords: Astronomy
    Type: Astrophysical Journal (ISSN 0004-637X); 569; 2 Pt 1; 878
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...