ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-09-07
    Description: Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
    Keywords: Astronomy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: This paper discusses the B and V photometry being obtained for variable stars in the northeast arm of the Small Magellanic Cloud (SMC).
    Keywords: Astronomy
    Type: Astronomical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Directly imaging extrasolar terrestrial planets necessarily means contending with the astrophysical noise of exozodiacal dust and the resonant structures created by these planets in exozodiacal clouds. Using a custom tailored hybrid symplectic integrator we have constructed 120 models of resonant structures created by exo-Earths and super-Earths on circular orbits interacting with collisionless steady-state dust clouds around a Sun-like star. Our models include enough particles to overcome the limitations of previous simulations that were often dominated by a handful of long-lived particles, allowing us to quantitatively study the contrast of the resulting ring structures. We found that in the case of a planet on a circular orbit, for a given star and dust source distribution, the morphology and contrast of the resonant structures depend on only two parameters: planet mass and (square root)ap/Beta, where ap is the planet's semi-major axis and Beta is the ratio of radiation pressure force to gravitational force on a grain. We constructed multiple-grain-size models of 25,000 particles each and showed that in a collisionless cloud, a Dohnanyi crushing law yields a resonant ring whose optical depth is dominated by the largest grains in the distribution, not the smallest. We used these models to estimate the mass of the lowest-mass planet that can be detected through observations of a resonant ring for a variety of assumptions about the dust cloud and the planet's orbit. Our simulations suggest that planets with mass as small as a few times Mars' mass may produce detectable signatures in debris disks at ap greater than or approximately equal to 10 AU.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets
    Keywords: Astronomy
    Type: GSFC.ABS.5505.2011 , Signposts of Planets; Oct 18, 2011 - Oct 20, 2011; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Future NASA concept missions that are currently under study, like the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-violet Optical Infra Red Surveyor (UVOIR), could discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, H2O, CO2, and CH4. The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky planets (0.5-1.0 solar radius), super-Earths (1.0-1.75 solar radius), sub-Neptunes (1.75-3.5 solar radius), sub-Jovians (3.5-6.0 solar radius), and Jovians (6-14.3 solar radius) based on their planet sizes, and "hot," "warm," and "cold" based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, eta (sub planet) [i.e. exoplanet], using the community coordinated results of NASA's Exoplanet Program Analysis Group's Science Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used to estimate the expected exoplanet yields for direct imaging missions of different telescope diameters.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN56203 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 856; 2; 122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Antarctic Planet Interferometer is an instrument concept designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperature found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at Dome C, an interferometer with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.
    Keywords: Astronomy
    Type: SPIE Astronomical Telescopes and Instrumentation2004; Jun 21, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN16483
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The hot subdwarf (sd) stars in the Palomar Green (PG) catalog of ultraviolet excess (UVX) objects play a key role in investigations of the frequency and types of binary companions and the distribution of orbital periods. These are important for establishing whether and by which channels the sd stars arise from interactions in close binary systems. It has been suggested that the list of PG sd stars is biased by the exclusion of many stars in binaries, whose spectra show the Ca I1 K line in absorption. A total of 1125 objects that were photometrically selected as candidates were ultimately rejected from the final PG catalog using this K-line criterion. We study 88 of these 'PG-Rejects' (PGRs), to assess whether there are significant numbers of unrecognized sd stars in binaries among the PGR objects. The presence of a sd should cause a large UVX, compared with the cool K-line star. We assemble GALEX, Johnson V, and 2MASS photometry and compare the colors of these PGR objects with those of known sd stars, cool single stars, and hot+cool binaries. Sixteen PGRs were detected in both the far- and near-ultraviolet GALEX passbands. Eleven of these, plus the 72 cases with only an upper limit in the far-ultraviolet band, are interpreted as single cool stars, appropriately rejected by the PG spectroscopy. Of the remaining five stars, three are consistent with being sd stars paired with a cool main sequence companion, while two may be single stars or composite systems of another type. We discuss the implications of these findings for the 1125 PGR objects as a whole. An enlarged study is desirable to increase confidence in these first results and to identify individual sd+cool binaries or other composites for follow-up study. The GALEX AIS data have sufficient sensitivity to carry out this larger study.
    Keywords: Astronomy
    Type: The Astronomical Journal; 138; 2; 606-614
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...