ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-17
    Description: Large-aperture photometric observations of comet Hale-Bopp (C/1995 O1) in the forbidden red line of neutral oxygen ([O I] 6300 angstroms) with the 150 mm dual-etalon Fabry-Perot spectrometer that comprises the Wisconsin H-alpha Mapper and a 50 mm dual-etalon Fabry-Perot spectrometer at the McMath-Pierce main telescope from 1997 late February to mid April yield a total metastable O((sup 1)D) production rate of (2.3-5.9) x 10(exp 30)/s. Applying the standard H2O and OH photodissociation branching ratios, we derive a water production rate, Q(H2O), of (2.6-6.1) x 10(exp 31)/s, which disagrees with Q(H2O = 1x10(exp 31)/s determined by independent H2O, OH, and H measurements. Furthermore, our own [O I] 6300 observations of the inner coma (〈 30,000 km) using the 3.5 m Wisconsin-Indiana-Yale-NOAO telescope Hydra and Densepak multi-object spectrographs yield Q(H2O) = 1 x 10(exp 31)/s. Using our [O I] 6300 data, which cover spatial scales ranging from 2,000 to 1x10(exp 6) km, and a complementary set of wide-field ground-based OH images, we can constrain the sources of the apparent excess O((sup 1)D) emission to the outer coma, where photodissociation of OH is assumed to be the dominant O((sup 1)D) production mechanism. From production rates of other oxygen-bearing volatiles (e.g., CO and CO2), we can account for at most 30% of the observed excess O((sup 1)D) emission. Since even less O((sup 1)D) should be coming from other sources (e.g., electron excitation of neutral O and distributed nonnuclear sources of H2O), we hypothesize that the bulk of the excess O((sup 1)D) is likely coming from photodissociating OH. Using the experimental OH photo-dissociation cross section of Nee and Lee at Ly-alpha as a guide in modifying the theoretical OH cross sections of van Dishoeck and Dalgarno, we can account for approximately 60% of the observed O((sup 1)D) excess without requiring major modifications to the other OH branching ratios or the total OH photodissociation lifetime.
    Keywords: Astronomy
    Type: Astrophysical Journal; 563; 451-461
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: This project has two overall objectives. One objective is to advance our general understanding of both the comet neutral atmosphere and the cometary plasma in the atmosphere and ion tall. The other objective is to obtain specific key information about comet Hale-Bopp that is generally important for Hale-Bopp studies. The primary emphasis in this project is to analyze, in a self-consistent manner, excellent quality high resolution image and line profile observations obtained by the University of Wisconsin for H, O, OH, and H2O+ emissions from the inner coma, outer coma, and ion tail of Hale-Bopp. The information on the spatial and velocity distributions of H2O neutral and ionized photo-products in the inner coma, outer coma, and in the H2O+ ion tail is of substantial and direct importance in the development of an integrated understanding of the complex structure and dynamics of the neutral and plasma species in the atmosphere of Hale-Bopp in particular and comets in general. The H2O production rate of Hale-Bopp is determined and, together with the other information related to the structure and dynamics of the neutral and plasma atmospheres obtained in this study, provide critical information important for a wide variety of research conducted by other groups.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...