ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-27
    Description: The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry
    Keywords: Astronomy
    Type: GSFC.JA.6040.2012 , 2011 Fermi Symposium; 9 - 12, May 2011; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: One of the main results of the Fermi Gamma-Ray Space Telescope is the discovery of gamma-ray selected pulsars. The high magnetic field pulsar, PSR J0007+7303 in CTA1, was the first ever to be discovered through its gamma-ray pulsations. Based on analysis of 2 years of LAT survey data, we report on the discovery of I-ray emission in the off-pulse phase interval at the approx. 6sigma level. The flux from this emission in the energy range E 〉 or =::: 100 MeV is F(sub 100) = (1.73+/-0.40) x 10(exp -8) photons/sq cm/s and is best fitted by a power law with a photon index of Gamma = 2.54+/-0.14. The pulsed gamma-ray flux in the same energy range is F(sub 100) = (3.95+/-0.07) x 10(exp -7) photons/sq cm/s and is best fitted by an exponentially-cutoff power-law spectrum with a photon index of Gamma = 1.41+/-0.23 and a cutoff energy E(sub c) = 4.04+/-0.20 GeV. We find no flux variability neither at the 2009 May glitch nor in the long term behavior. We model the gamma-ray light curve with two high-altitude emission models, the outer gap and slot gap, and find that the model that best fits the data depends strongly on the assumed origin of the off-pulse emission. Both models favor a large angle between the magnetic axis and observer line of sight, consistent with the nondetection of radio emission being a geometrical effect. Finally we discuss how the LAT results bear on the understanding of the cooling of this neutron star.
    Keywords: Astronomy
    Type: GSFC.ABS.5880.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 1 0A4 mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approx. 5 - 30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology.
    Keywords: Astronomy
    Type: 24th Texas Symposium on Relativistic Astrophysics; Dec 08, 2008 - Dec 12, 2008; Vancouver, BC; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...