ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (4)
Collection
Keywords
Years
  • 1
    Publication Date: 2018-06-06
    Description: Accurate measurements of neutron star masses are needed to constrain the equation of state of neutron star matter - of importance to both particle physics and the astrophysics of neutron stars - and to identify the evolutionary track of the progenitor stars that form neutron stars. The best measured values of the mass of 4UO900-40 (= Vela XR-l), 1.86 +/- 0.16 Msun (Barziv et al. 2001) and 1.93 +/- 0.20 Msun (Abubekerov et al. 2004), make it a leading candidate for the most massive neutron star known. The direct relationship between the maximum mass of neutron stars and the equation of state of ultra-dense matter makes 4UO900-40 an important neutron star mass to determine accurately. The confidence interval on previous mass estimates, obtained from observations that include parameters determined by non-dynamical methods, are not small enough to significantly restrict possible equations of state. We describe here a purely dynamical method for determining the mass of 4UO900-40, an X-ray pulsar, using the reprocessed UV pulses emitted by its BO.5Ib companion. One can derive the instantaneous radial velocity of each component by simultaneous X-ray and UV observations at the two quadratures of the system. The Doppler shift caused by the primary's rotational velocity and the illumination pattern of the X-rays on the primary, two of the three principal contributors to the uncertainty on the derived mass of the neutron star, almost exactly cancel by symmetry in this method. A heuristic measurement of the mass of 4UO900-40 using observations obtained previously with the High Speed Photometer on HST is given in Appendix A.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph to investigate the characteristic dimension of Lyman-alpha forest clouds in the direction of the quasar. If one makes the usual assumption that the absorbing structures are spherical clouds with a single radius, that radius can be found analytically from the ratio of Lyman-alpha lines in only one line of sight to the number in both. A simple power series approximation to this solution, accurate everywhere to better than 1%, will be presented. Absorption lines in Q0957+561 having equivalent width greater than 0.3 A in the observer's frame not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approximately 1.5 times higher signal to noise than our spectra. Ly-alpha forest lines appear at 41 distinct wavelengths in the spectra of the two images. One absorption line in the spectrum of image A has no counterpart in the spectrum of image B, and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-alpha forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a radius R = 160 (+120, -70) h (sup -1) (sub 50) kpc (H (sub 0) 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2). The 95% confidence interval on R extends from (50 950) h (sup -1) (sub 50) kpc.
    Keywords: Astronomy
    Type: Jun 04, 2000 - Jun 08, 2000; Rochester, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and O VI lambda 1037 emission lines reported in IUE (International Ultraviolet Explorer) spectra. The fluxes in these lines vary on a time scale of weeks in the local rest frame (LRF), independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W (sub lambda) greater than or equal to 0.3 Angstroms in the LRF not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be LY-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approx. 1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W (sub lambda) greater than or equal to 0.3 Angstroms appear at 42 distinct wavelengths in the spectra of the two images. Two absorption lines in the spectrum of image A have no counterpart at that wavelength in the spectrum of image B, and two lines in image B have no counterpart in image A. Based on the separation of the lines of sight at the redshift of the absorption lines appearing in only one spectrum, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance of 79 (+34, -26) h (sub 50) (sup -1) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension is the radius. (We adopt H (sub 0)= 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2, and LAMBDA = 0 throughout the paper.) The two limits define the 68% confidence interval on the characteristic dimension, equivalent to the 1 sigma confidence interval for a Gaussian distribution. The 95% confidence interval extends from (32 - 250) h (sub 50) (sup -1) kpc. We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly converging power series in 1/r, where r the ratio of the radius of the cloud to the separation of the two LOS at the redshift of the cloud. This power series can be rewritten to give r in terms of the fraction of Ly-alpha forest wavelengths that appear in the spectrum of only one image. A simple linear approximation to the solution which everywhere agrees with the power series solution to better than 0.8% for r greater than or equal to 2 is derived in the Appendix.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...