ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (1)
  • infrared solar observations  (1)
  • 1
    ISSN: 1573-0662
    Keywords: HCN ; infrared solar observations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A set of high-resolution IR solar spectra recorded at the International Scientific Station of the Jungfraujoch, Switzerland, from 84/06 to 93/06, and at the National Solar Observatory McMath-Pierce solar telescope facility on Kitt Peak, Arizona, U.S.A. from 78/05 to 92/07 have been analyzed to determine the vertical column abundances of hydrogen cyanide, HCN, above the two stations. The analysis was based on least-squares curve fitting of calculated spectra to the observations encompassing the P4 and the P8 lines of HCN respectively located at 3299.5273 and 3287.2483 cm−1. The results obtained for the two stations indicate that no significant long-term trend affects either of the two databases; however, this analysis reveals variable increases during springtime of up to a factor of 2 in the HCN total column above the Jungfraujoch and even up to 3 above Kitt Peak. The calculated mean vertical column abundances, excluding the spring observations, are equal to (2.55±0.30)×1015 molec./cm2 (S.D.) and (2.75±0.30)×1015 molec./cm2 respectively above the Jungfraujoch and the Kitt Peak observatories. Based on a realistic volume mixing ratio profile, these columns translate into mean volume mixing ratios equal to 190×10−12 ppv at the respective altitudes of the stations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: We have analyzed an active region which was observed in H.alpha (Multichannel Subtractive Double Pass Spectrograph), in UV lines (SMM/UVSP), and in X-rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X-rays. Using an extrapolation based on the Fourier transform, we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find two different zones: (1) a high-shear region (〉 70 deg) where subflares occur, and (2) a low-shear region along the magnetic inversion line where UV bright points are observed. In these latter regions the magnetic topology is complex with a mixture of polarities. According to the velocity field observed in the Si IV lamda.1402 line and the extrapolation of the magnetic field, we notice that each UV bright point is consistent with emission from low-rising loops with downflows at both ends. We notice some hard X-ray emissions above the bright-point regions with temperatures up to 8 x 10(exp 6) K, which suggests some induced reconnection due to continuous emergence of new flux. This reconnection is also enhanced by neighboring subflares.
    Keywords: Astronomy
    Type: Astrophysical Journal; Volume 510; 474-484
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...