ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-16
    Description: A simple but useful formula describing the effect of electron gun pulse width on the time of flight (TOF) spectra measured in translational spectroscopy experiments is developed. An approximately monoenergetic pulsed electrostatically focused electron beam traverses a scattering cell filled with a Maxwellian gas. Inelastic electron collisions with the gas produce metastable particles, ions, scattered electrons, and photons which then pass through a collimating slit system at right angles to the electron beam. TOF techniques are used to separate the photon signal from the metastable particle signal and to measure the TOF distribution of the metastable species.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Review of Scientific Instruments; 45; Feb. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-16
    Description: The factors determining the sensitivity of a real astronomical heterodyne spectrometer are described. The deviation from the ideal heterodyne system for line detection is described in terms of a series of degradation factors. A discussion of degradation due to a low local oscillator power and to line profile detection is presented. Representative values for the degradation factors are given. Even with a total degradation of not less than 30, the heterodyne spectrometer is still found to be a highly sensitive tool in IR astronomy.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: The characteristics of infrared molecular emissions induced by energetic collisions between ambient atmospheric species and surfaces in Earth orbit are investigated, using a low-nitrogen-cooled filter wheel photometer covering the wavelength range 0.9-.5 microns with a resolving power Lambda/Delta Lambda of approximately 100. This resolving power is sufficient for identification of the molecular or atomic fluorescent spaces causing the glow.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Marshall Space Flight Center 2d Workshop on Spacecraft Glow; p 250-259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-16
    Description: A discussion and an evaluation of the degradation in sensitivity are given for a heterodyne spectrometer employing a HgCdTe photodiode mixer and tunable diode lasers. The minimum detectable source brightness is considered as a function of the mixer parameters, transmission coefficient of the beam splitter, and local oscillator emission powers. The degradation in the minimum detectable line source brightness that results from the bandwidth being a fraction of the line width is evaluated and plotted as a function of the wavelength and bandwidth for various temperature to mass ratios. It is shown that the minimum achievable degradation in the sensitivity of a practical astronomical heterodyne spectrometer is about 30. Estimates of SNRs with which IR line emission from astronomical sources of interest may be detected are given.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics; 15; Feb. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-17
    Description: Infrared heterodyne spectroscopy provides a means of measuring the intensity profiles of individual rotation-vibration spectral lines with high sensitivity. Considerable effort has been expended on optimizing these instruments for remote measurements of gases in planetary atmospheres with the result that present-generation spectrometers are beginning to provide new and startling results on the planets. The fundamental principles of laser heterodyne spectroscopy are discussed. Detailed considerations of the optical design and the electronic design of the spectral-line receiver are given. Representative results obtained with this spectrometer are discussed, including precision frequency measurements of NH3 (nu-2) lines, detection of auroral emission from Jupiter, and measurements of terrestrial O3 and CO2.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Optical Engineering; 17; Jan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The technique of laser heterodyne spectroscopy has been applied to the measurement of solar oscillations. Coherent mixing of solar radiation with the output of a frequency-stabilized CO2 laser permits the measurement of fully resolved profiles of solar absorption lines with high spectral purity and excellent frequency stability. This technique has been used to measure OH pure rotation lines in the infrared solar spectrum. Power spectra of these line frequency measurements show the well-known 5-min oscillations as well as significant velocity power at shorter periods.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics (ISSN 0003-6935); 25; 58-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-18
    Description: A diode-laser-based, ultrahigh resolution IR heterodyne spectrometer for laboratory and field use has been developed for operation between 7.5 and 8.5 microns. The local oscillator is a PbSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed-cycle cooler. The laser output frequency is controlled and stabilized using a high-precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. The system largely employs reflecting optics to minimize losses from internal reflection and absorption and to eliminate chromatic effects. Spectral analysis of the diode-laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the IR spectral regions over which useful heterodyne operation can be achieved. Observations have been made of atmospheric N2O, O3, and CH4 between 1170 and 1200/cm, using both a single-frequency swept IF channel and a 64-channel RF spectral line receiver with a total IF coverage of 1600 MHz.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics; 21; Jan. 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Comets contain relatively well preserved icy material remaining from the epoch of Solar System formation, however the extent to which these ices are modified from their initial state remains a fundamental question in cometary science. As a comet approaches the Sun, sublimation of the ices contained in its nucleus (termed " native ices") releases parent volatiles into the coma, where they can be measured spectroscopically. One means of assessing the degree to which interstellar ices were processed prior to their incorporation into cometary nuclei is to measure the relative abundances of chemically-related parent volatiles. For example, formation of C2H6 by hydrogen atom addition (e.g., to C2H2) on surfaces of ice-mantled grains was proposed to explain the high C2H6 to CH4 abundance observed in C/1996 B2 (Hyakutake) [1]. The large C2H6/CH4 abundance ratios measured universally in comets, compared with those predicted by gas phase production of C2H6, establishes H-atom addition as an important and likely ubiquitous process. CO should also be hydrogenated on grain surfaces. Laboratory irradiation experiments on interstellar ice analogs indicate this to require very low temperatures (T approx. 10-25 K), the resulting yields of H2CO and CH3OH being highly dependent both on hydrogen density (i.e., fluence) and on temperature ([2],[3]). This relatively narrow range in temperature reflects a lack of mobility below 8-10 K on the one hand, and reduced sticking times for H-atoms as grain surfaces are warmed above 20 K on the other. The relative abundances of these three chemically-related molecules in comets provides one measure of the efficiency of H-atom addition to CO on pre-cometary grains (Fig. 1).
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: We acquired high resolution near-infrared spectra of comet 103P/Hartley-2 with NIRSPEC at the W. M. Keck Observatory and CRIRES at the ESO VLT, emphasizing primary volatiles before, during, and after the comet's close approach to Earth (July-December 2010; R(sub h) =1.62 right arrow 1.26 AU). We will present the mixing ratios for trace volatiles (C2H6, HCN, CH3OH, etc.), their rotational temperatures, and their spatial distributions in the coma both along the polar jet (UT 19.5 October) and nearly orthogonal to the jet (UT 22.5 October).
    Keywords: Astronomy
    Type: 42nd Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Comets retain relatively primitive icy material remaining from the epoch of Solar System for111ation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the ~ 3-5 micrometer region. With modern instrumentation on worldclass telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6 CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.
    Keywords: Astronomy
    Type: GSFC.ABS.01161.2012 , Asteroids, Comets, Meteors (ACM) 2012; May 16, 2012 - May 20, 2012; Niigata; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...