ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: Comets contain relatively well preserved icy material remaining from the epoch of Solar System formation, however the extent to which these ices are modified from their initial state remains a fundamental question in cometary science. As a comet approaches the Sun, sublimation of the ices contained in its nucleus (termed " native ices") releases parent volatiles into the coma, where they can be measured spectroscopically. One means of assessing the degree to which interstellar ices were processed prior to their incorporation into cometary nuclei is to measure the relative abundances of chemically-related parent volatiles. For example, formation of C2H6 by hydrogen atom addition (e.g., to C2H2) on surfaces of ice-mantled grains was proposed to explain the high C2H6 to CH4 abundance observed in C/1996 B2 (Hyakutake) [1]. The large C2H6/CH4 abundance ratios measured universally in comets, compared with those predicted by gas phase production of C2H6, establishes H-atom addition as an important and likely ubiquitous process. CO should also be hydrogenated on grain surfaces. Laboratory irradiation experiments on interstellar ice analogs indicate this to require very low temperatures (T approx. 10-25 K), the resulting yields of H2CO and CH3OH being highly dependent both on hydrogen density (i.e., fluence) and on temperature ([2],[3]). This relatively narrow range in temperature reflects a lack of mobility below 8-10 K on the one hand, and reduced sticking times for H-atoms as grain surfaces are warmed above 20 K on the other. The relative abundances of these three chemically-related molecules in comets provides one measure of the efficiency of H-atom addition to CO on pre-cometary grains (Fig. 1).
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The use of infrared heterodyne spectrocopy for the study of planetary atmospheres is discussed. Infrared heterodyne spectroscopy provides a convenient and sensitive method for measuring the true intensity profiles of atmospheric spectral lines. Application of radiative transfer theory to measured lineshapes can then permit the study of molecular abundances, temperatures, total pressures, excitation conditions, and dynamics of the regions of line formation. The theory of formation of atmospheric spectral lines and the retrieval of the information contained in these molecular lines is illustrated. Notable successes of such retrievals from infrared heterodyne measurements on Venus, Mars, Jupiter and the Earth are given. A discussion of developments in infrared heterodyne technology is also presented.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-85047 , NAS 1.15:85047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: We acquired high resolution near-infrared spectra of comet 103P/Hartley-2 with NIRSPEC at the W. M. Keck Observatory and CRIRES at the ESO VLT, emphasizing primary volatiles before, during, and after the comet's close approach to Earth (July-December 2010; R(sub h) =1.62 right arrow 1.26 AU). We will present the mixing ratios for trace volatiles (C2H6, HCN, CH3OH, etc.), their rotational temperatures, and their spatial distributions in the coma both along the polar jet (UT 19.5 October) and nearly orthogonal to the jet (UT 22.5 October).
    Keywords: Astronomy
    Type: 42nd Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Comets retain relatively primitive icy material remaining from the epoch of Solar System for111ation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the ~ 3-5 micrometer region. With modern instrumentation on worldclass telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6 CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.
    Keywords: Astronomy
    Type: GSFC.ABS.01161.2012 , Asteroids, Comets, Meteors (ACM) 2012; May 16, 2012 - May 20, 2012; Niigata; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The recent discovery of methane on Mars has led to much discussion concerning its origin. On Earth, the isotopic signatures of methane vary with the nature of its production. Specifically, the ratios among 12CH4, 13CH4, and 12CH3D differ for biotic and abiotic origins. On Mars, measuring these ratios would provide insights into the origins of methane and measurements of water isotopologues co-released with methane would assist in testing their chemical relationship. Since 1997, we have been measuring HDO and H2O in Mars atmosphere and comparing their ratio to that in Earth s oceans. We recently incorporated a line-by-line radiative transfer model (LBLRTM) into our analysis. Here, we present a map for [HDO]/[H2O] along the central meridian (1541W) for Ls 501. From these results, we constructed models to determine the observational conditions needed to quantify the isotopic ratios of methane in Mars atmosphere. Current ground-based instruments lack the spectral resolution and sensitivity needed to make these measurements. Measurements of the isotopologues of methane will likely require in situ sampling.
    Keywords: Astronomy
    Type: GSFC.JA.01233.2012 , Planetary and Space Science; 59; 3-Feb; 163-168
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...