ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (109)
  • 2000-2004  (109)
  • 1980-1984
  • 2004  (67)
  • 2001  (42)
  • 1
    Publication Date: 2019-07-13
    Description: We carried out direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) 〉= 5.3 mag and Ks 〈 20:2 mag, using 24 micron data from the Spitzer Space Telescope. Combining deep 24 micron Ks- and R-band data over an area of ~64 arcmin(sup 2) in ELAIS N1 of the Spitzer First Look Survey (FLS), we find that 50% +/- 6% of our extremely red object (ERO) sample have measurable 24 micron flux above the 3 (sigma) flux limit of 40 (micro)Jy. This flux limit corresponds to a star formation rate (SFR) of 12 solar masses per year ~1, much more sensitive than any previous long-wavelength measurement. The 24 micron-detected EROs have 24 micron/2.2 micron and 24 micron/0.7 micron flux ratios consistent with infrared luminous, dusty sources at z 〉= 1, and are an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micron-detected EROs could be active galactic nuclei; however, the fraction among the whole ERO sample is probably small, 10%-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z ~1. The mean 24 micron flux (167 (micro)Jy) of the 24 micron-detected ERO sample roughly corresponds to the rest-frame 12 micron luminosity, (nu)L(nu)(12 micron, of 3x10(exp 10)(deg) solar luminosities at z ~1. Using the c IRAS (nu)L(nu)(12 (micron) and infrared luminosity LIR(8-1000 (micron), we infer that the (LIR) of the 24 micron- detected EROs is 3 x 10(exp 11) and 1 x 10(exp 12) solar luminosities at z = 1.0 and similar to that of local luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs). The corresponding SFR would be roughly 50-170 solar masses per year. If the timescale of this starbursting phase is on the order of 108 yr as inferred for the local LIRGs and ULIRGs, the lower limit on the masses of these 24 micron-detected EROs is 5 x 10(exp 9) to 2 x 10(exp 10) solar masses. It is plausible that some of the starburst EROs are in the midst of a violent transformation to become massive early type galaxies at the epoch of z ~1-2.
    Keywords: Astronomy
    Type: The Astrophysical Journal Supplement Series; 154; 75-79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We carried out the direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R-K(sub s)) greater than or equal to 5.3 mag and K(sub s) less than 20.2 mag, using from the Spitzer Space Telescope. Combining deep 24 micrometers, K(sub s)- and R-band data over an area of approximately 64 sq.arcmin in the ELAIS N1 field of the Spitzer First Look Survey (FLS), we find that 50 +/- 60% of our ERO sample have measurable 24 micrometer flux above the 3(sigma) flux limit of 40 microns Jy. This flux limit corresponds to a SFR of 12 solar mass/yr at z approximately 1, much mo previous long wavelength measurement. The 24fJ,m-detected EROs have 24-to2.2 and 24-to-0.7micrometr flux ratios consistent with infrared luminous, dusty sources at z approx. 1, and an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micrometer-detected EROs could be AGN, however, the fraction among the whole ERO sample is probably small, 10-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS Nl are probably at z approx. 1.
    Keywords: Astronomy
    Type: Space Telescope Science Institute (STSCI) Mini Workshop Massive Galaxies over Cosmic Time; Sep 27, 2004 - Sep 29, 2004; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: SAFIR will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 157-166; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The question "How did we get here and what will the future bring?"captures the human imagination and the attention of the National Academy of Science's Astronomy and Astrophysics Survey Committee (AASC). Fulfillment of this fundamental goal requires astronomers to have sensitive, high angular and spectral resolution observations in the far-infrared/submillimeter (far- IR/sub-mm) spectral region. With half the luminosity of the universe and vital information about galaxy, star and planet formation, observations in this spectral region require capabilities similar to those currently available or planned at shorter wavelengths. In this paper we summarize the scientific motivation, some mission concepts and technology requirements for far-IR/sub-mm space interferometers that can be developed in the 2010-2020 timeframe.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 167-177; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: We describe 12 x 32 arrays of semiconducting cryogenic bolometers designed for use in far-infrared and submillimeter cameras. These 12 x 32 arrays are constructed from 1 x 32 monolithic pop-up detectors developed at NASA Goddard Space Flight Center. The pop-up technology allows the construction of large arrays with high filling factors that provide efficient use of space in the focal planes of far-infrared and submillimeter astronomical instruments. This directly leads to a significant decrease in observing time. The prototype array is currently operating in SHARC II, a facility instrument in use at the Caltech Submillimeter Observatory (CSO). The elements of this array employ a bismuth absorber coating and quarter wave backshort to optimize the bolometer absorption for a passband centered at 350 microns. However, this resonant structure also provides good bolometer performance at 450 and 850 microns, the two additional SHARC II passbands. A second array is to be installed in the High-resolution Airborne Widebandwidth Camera (HAWC), a far-infrared imaging camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). This array is currently in the final stage of construction, and its completion is expected in early 2004. HAWC is scheduled for commissioning in 2005. The HAWC array employs titanium-gold absorbers and is optimized for uniform absorption from 40 to 300 microns to accommodate all four of its far-infrared passbands. We describe the details of the array construction including the mechanical design and electrical characterization of the constituent linear arrays, comparing the SHARC II and HAWC cases. We also summarize the overall characteristics of the final two-dimensional arrays. Finally, we show examples of array performance in the form of images obtained with SHARC II.
    Keywords: Astronomy
    Type: 15th International Symposium on Space Terahertz Technology; Apr 27, 2004 - Apr 29, 2004; Northampton, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: HERO is a balloon payload featuring shallow-graze angle replicated optics for hard-x-ray imaging. When completed, the instrument will offer unprecedented sensitivity in the hard-x-ray region, giving thousands of sources to choose from for detailed study on long flights. A recent proof-of-concept flight captured the first hard-x-ray focused images of the Crab Nebula, Cygnus X-1 and GRS 1915+105. Full details of the HERO program are presented, including the design and performance of the optics, the detectors and the gondola. Results from the recent proving flight are discussed together with expected future performance when the full science payload is completed.
    Keywords: Astronomy
    Type: SPIE''s 46th Annual Meeting; Jul 29, 2001 - Aug 03, 2001; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: Analysis of the images produced by the first version (V1) of the Vulcan photometer indicated that two major sources of noise were sky brightness and image motion. To reduce the effect of the sky brightness, a second version (V2) with a longer focal length and a larger format detector was developed and tested. The first version consisted of 15-centimeter (cm) focal length, F/1.5 Aerojet Delft reconnaissance lens, and a 2048 x 2048 format front-illuminated charged coupled device (CCD) with 9 microns micropixels (Mpixels). The second version used a 30-cm focal length, F/2.5 Kodak AeroEktar lens, and a 4096 x 4096 format CCD with 9 micro pixels. Both have a 49-square-degree field of view (FOV) but the area of the sky subtended by each pixel in the V2 version is one-fourth that of the V1 version. This modification substantially reduces the shot noise due to the sky background and allows fainter stars to be monitored for planetary transits. To remove the data gap and consequent signal-level change caused by flipping the photometer around the declination axis and to reduce image movement on the detector, several other modifications were incorporated. These include modifying the mount and stiffening the photometer and autoguider structures to reduce flexure. This paper compares the performance characteristics of each photometer and discusses tests to identify sources of systematic noise.
    Keywords: Astronomy
    Type: Third Workshop on Photometry; 63-70; NASA/CP-2000-209614
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: Stardust successfully encountered comet 81P/Wild 2 on 2 January 2004 at a distance of 236.4 +/- 1 km. All encounter investigations acquired valuable new and surprising findings. The time-of-flight spectrometer registered 29 spectra during flyby and measured the first negative ion mass spectra of cometary particles. The dust detectors recorded particles over a broad mass range, 10(exp -11) to 10(exp -4) g. Unexpectedly, the dust distribution along Stardust's flight path was far from uniform, but instead occurred in short 'bursts', suggesting in-flight breakup of fragments ejected from the nucleus. High-resolution, stunning images of the Wild 2 surface show a diverse and complex variety of landforms not seen from comets 1P/Halley and 19P/Borrelly or icy satellites of the outer solar system. Longer-exposure images reveal large numbers of jets projected nearly around the entire perimeter of the nucleus, many of which appear to be highly collimated. A triaxial ellipsoidal fit of the Wild 2 nucleus images yields the principal nucleus radii of 1.65 X 2.00 X2.75 km (+/- 0.05 km). The orientations and source locations on the nucleus surface of 20 highly collimated and partially overlapping jets have been traced. There is every indication that the expected samples were successfully collected from the Wild 2 coma and are poised for a return to Earth on 15 January 2006.
    Keywords: Astronomy
    Type: Journal Of Geophysical Research; Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...